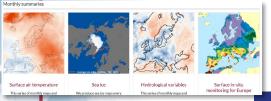


EU perspective on application needs for current climate information

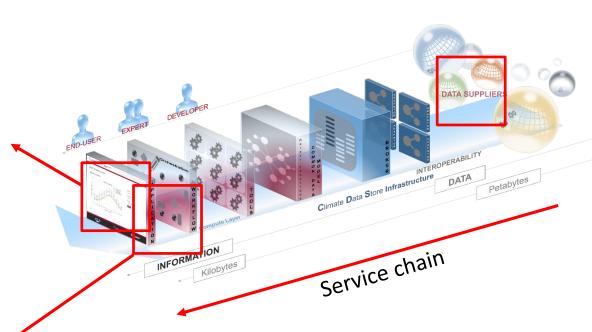
Freja Vamborg and many colleagues in C3S and beyond

ECMWF, Copernicus Climate Change Service (C3S)

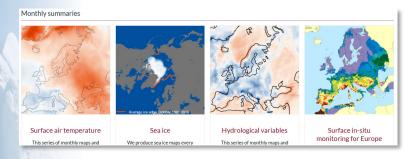
EUMETSAT - ROM SAF - C3S Satellite ECVs — Workshop Nov 2020

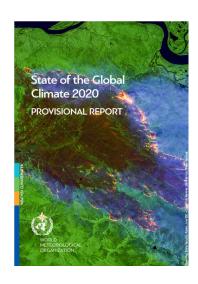


Data-driven climate information for communication


Monthly ~ 5th

Annually ~ April

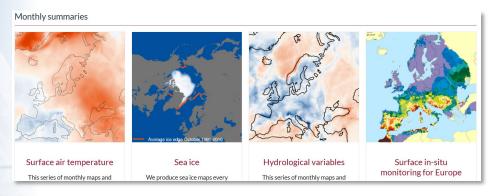



Quality Assured information and tools for users ranging from scientists to practitioners and policy makers.

Data-driven climate information for communication

Key

- timeliness
- the current as compared to the long-term (stable & consistent)
- fitness for purpose
- For C3S: Global, Europe, Arctic



C3S monthly climate bulletin

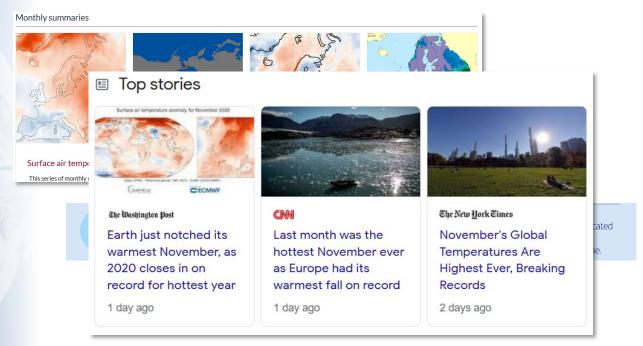
published ~5-7 of every month, with additional products around 24th

Reanalysis

Using a combination of observations and computer models to recreate historical climate conditions.

In situ

Measurements from an instrument located at the point of interest, such as a land station, at sea or in an aeroplane.

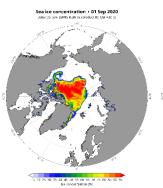


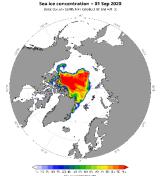
C3S monthly climate bulletin

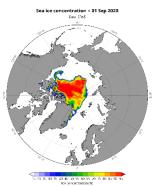
published ~5-7 of every month, with additional products around 24th

C3S monthly climate bulletin — sea ice

Reanalysis


Using a combination of observations and computer models to recreate historical climate conditions.




Satellites

Providing information about the Earth's surface and its atmosphere from spaceborne orbit.

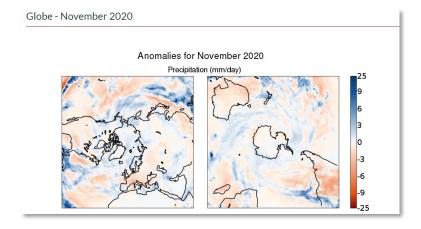
- Arctic
- The Antarctic
- Monthly average extent
- Qualitative

climate.copernicus.eu/climate-bulletins

Thanks to Julien Nicholas for graphics!

C3S monthly climate bulletin — precipitation

Reanalysis


Using a combination of observations and computer models to recreate historical climate conditions.

Satellites

Providing information about the Earth's surface and its atmosphere from spaceborne orbit.

- Europe
- Global: extra-tropics
- Monthly average anomalies
- Qualitative
- >> Move towards combined product?
- climate.copernicus.eu/climate-bulletins

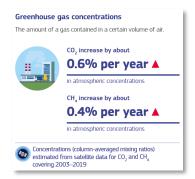
European state of the climate

published annually in April since 2018

Three periods of exceptionally warm weather led to recordbreaking high temperatures

One of the wettest Novembers on record brought precipitation of up to four times the normal amounts

Heat and


cold stress

The number of days with high heat stress levels are

increasing in both northern and southern Europe.

11 of the 12 warmest years have occurred since 2000

Reanalysis

Using a combination of observations and computer models to recreate historical climate conditions.

In situ

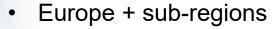
Measurements from an instrument located at the point of interest, such as a land station, at sea or in an aeroplane.

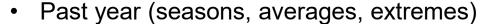
Satellites

Providing information about the Earth's surface and its atmosphere from spaceborne orbit.

Model-based estimates

Using the laws of physics and statistics to build large-scale models of environmental indicators.


European state of the climate


published annually in April since 2018

Reanalysis

Using a combination of observations and computer models to recreate historical climate conditions.

In situ

Measurements from an instrument located at the point of interest, such as a land station, at sea or in an aeroplane.

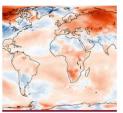
Satellites

Providing information about the Earth's surface and its atmosphere from spaceborne orbit.

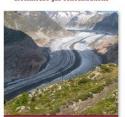
Model-based estimates

Using the laws of physics and statistics to build large-scale models of environmental indicators.

1991–2010



Increasing relevance for target stakeholders


Sea ice

Ice sheets

Greenhouse gas concentrations

Glaciers

Glaciers and sea level

Lake surface temperatures

Greenland ice sheet

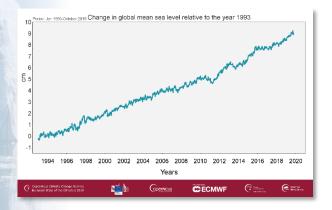
Wildfires

River discharge

Sunshine duration and clouds

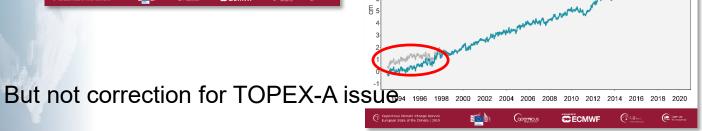
Heat and cold stress

Inclusion of dataset and products shown based on maturity



Sea level

C3S (i)CDR >> CMEMS ocean monitoring indicator Includes post-glacial adjustment



In Europe by

2–4 mm per year ▲

mean sea level increase

2019 Change in global mean sea level relative to the year 1993

climate.copernicus.eu/ESOTC/2019/sea-level

CDRs/iCDRs, assessment vs 'NRT' monitoring

Now: iCDR: the 'best' information at the time of release (monitoring, NRT producti

- reprocess CDR → assessment of fitness-for-purpose (uncertainties etc.)
- Uptake of CDR in climate assessments
- → iCDR usable for e.g. these monitoring activities

Contact information

For user support: climate.copernicus.eu/help-and-support

Find us: climate.copernicus.eu @CopernicusECMWF @CopernicusEU @ECMWF

<u>freja.vamborg@ecmwf.int</u> @FrejaandTIH

