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Acronym Definition 

AC Atmospheric Correction 

ATBD Algorithm Theoretical Baseline Document 

CCI Climate Change Initiative 

CDOM Coloured Dissolved Organic Matter 

ESA European Space Agency 

GIOP Generalized Inherent Optical Property 

GSM Garver-Siegel-Maritorena 

HOPE Hyperspectral Optimization Process Exemplar 

HPLC High Performance Liquid Chromatography 

IOPs Inherent Optical Properties  

MERIS Medium Resolution Imaging Spectrometer 

NASA National Aeronautics and Space Administration 

OC-CCI Ocean Colour Climate Change Initiative 

OC-DB Copernicus Ocean Colour Database   

OMAPS Ocean Colour Multi-Mission Algorithm Prototype System 
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QAA Quasi-Analytical Algorithm 

RMSE Root Mean Square Error 

RR Round Robin 

Rrs Remote Sensing Reflectance 

SeaDAS SeaWiFS Data Analysis System 

SeaWiFS Sea-Viewing Wide Field-of-View Sensor 

SoW Statement of Work 
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1 Introduction 

1.1 Scope of the document 
Following atmospheric correction (AC) of remotely sensed ocean colour data to generate surface reflectance 
products, in-water algorithms are implemented to derive additional products of interest to the ocean colour 
community (such as chlorophyll-a concentration). The development of new or improved in-water algorithms 
remains an active field of research, necessitating the continued comparison of algorithms in an objective and 
repeatable manner.  
 
This ATBD describes the various in-water algorithms available for use within the OMAPS processor, how 
the optimal algorithms for use are chosen and the approach used for algorithm blending within the ‘Online 
Processor’ subsystem developed in the OMAPS project.  This is done in order to provide optimal product 
performance.  
 
The selection of optimal in-water algorithms involves a round-robin comparison of the performance of bio-
optical algorithms for use with remotely-sensed reflectance (Rrs) ocean colour data.  Here, we describe the 
required input data and the algorithmic and statistical approaches used to score and rank algorithms. This 
methodology follows the work undertaken in the ESA Ocean Colour-CCI (OC-CCI) project (Brewin et al. 
2013, OC-CCI 2016).  
 
The objective scoring system compares algorithms in a multi-metric round-robin.  The performance of each 
model is compared to the best performing or best possible performance, on a metric by metric basis before 
the overall performance is assessed. The procedure also makes use of fuzzy classification, assessing the 
algorithm performance within waters characteristic of each member of a water class set.  As the algorithm 
assessment relies on matchups with in-situ data, a bootstrapping method varies the composition of the 
matched data to try and remove the impact of sampling bias on the results. 
 
If differing algorithms are found to perform better in differing optical water classes then the blending 
approach can be used to provide a seamless transition between algorithms.  This is also described within this 
document.  As with the algorithm Round Robin, the approach is based upon the work performed by the 
Ocean Colour Climate Change Initiative (OC-CCI) project.   
 

1.2 Blending Context 
The requirement for algorithm blending results from the desire to create the highest quality products across a 
range of in-water conditions with a single processing chain.  Following an assessment of the suitability of 
candidate algorithms for a range of optical conditions, the approach presented here allows the application 
and blending of multiple algorithms. 
 
This reflects the state-of-the art as most algorithms are designed/parameterised to work for a given region, 
range in chlorophyll-a concentrations or water type. The approach presented should improve the overall 
performance of the final derived products and allow a reduction in product uncertainties. 
 
Within the context of ocean colour, a successful algorithm blending should combine algorithms seamlessly 
to produce the optimal final product without introducing boundary artefacts. Work to achieve this goal was 
undertaken within the OC-CCI project, building upon the work of (Moore et al., 2014).  The implementation 
and demonstrated utility of that approach is covered by Jackson et al. (2017) and the OC-CCI 
OCAB_ATBD.  Here we will summarise the approach in general terms and describe its place and 
interactions within the OMAPS system. 
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Figure 1 shows how these stages (Round robin assessment and algorithm blending) are linked to provide 
blended output products from the OMAPS processor.  The diagram is general in its construction, so it is 
worth noting that within the OMAPS system, Stage 1 is performed by the offline processor subsystem and 
Stage 2 is performed by the online processor subsystem. 

 
Figure 1: Schematic diagram of the two stages involved in creating blended output products.  Stage 1 is the assessment of algorithm 
performance across a range of optical types.  Stage 2 is the application of the resulting blending scheme to Rrs data. 
 

2 Prerequisites	

2.1 In situ database  
 
A fundamental component of the algorithm analysis is the underlying in situ data base. In the case of OC-
CCI, this is the titled “the Ocean Colour CCI database”. It is a compilation and quality screening of existing 
open database (such as SeaBASS, MERMAID, Aeronet-OC) and proprietary measurements of the OC-CCI 
team and was published as Valente(2016). For OMAPS the Copernicus Ocean Colour Database (OC-DB) 
will be the source for reference measurements (https://ocdb.eumetsat.int).  Within OC-CCI, the matchups 
were performed on the L3 data but within OMAPS we will use the L2 data processed using the OMAPS 
online processing system.  
 
The following variables are of particular interest in the context of in-water algorithm validation: remote 
sensing reflectance, concentration of chlorophyll-a, inherent optical properties like phytoplankton absorption 
(aph), total absorption of detritus and gelbstoff (adg), backscattering of particles (bbp) and the diffuse 
attenuation coefficient (Kd).  
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The in-situ data have to be homogenised, quality controlled and merged to commonly named variables.  
Metadata of each in situ measurement such as original source, cruise or experiment, and principal 
investigator has to propagated throughout the work and made available in the final data set.  By making the 
metadata available, it is also possible to analyse each set of data separately and explore its impact on ocean 
colour validation. 
 

2.2 Candidate in-water algorithms  
 
The candidates for the in-water algorithm intercomparison have to be available (codified) for interaction 
with the RR-OC module. For the purpose of the RR-OC it is technically sufficient to have an executable of 
the code. However, for deeper understanding of the algorithm performance it is important to have open 
access to the source code.  There is a large suite of potential products that can be generated from Rrs data but 
in the context of OMAPS we will focus on algorithms designed to derive Chlorophyll-a or Kd products.  For 
a given round robin exercise, algorithms will be assessed on a product-by-product basis.   This means that 
we will only assess performance in the context of chl-a, or Kd(490) (or if you were looking at IOP matchups 
you would consider each IOP variable separately).  The round robin module will assess products based on 
the product strings given in the config file.  This means that you can compare any subset of empirical 
models or empirical + semi-analytical models provided that the products have been computed and extracted 
into the matchup products. 
 
Generally, algorithms for ocean colour products are either semi-analytical or empirical.  The following 
sections describe potential candidate semi-analytical models, usually designed to retrieve Inherent Optical 
Properties (IOPs), and the empirical chlorophyll algorithms.  The listed set of algorithms were chosen to 
follow on from the OC-CCI activities.  The empirical algorithms include both 2 band, 3 band and 4 band 
algorithms as though algorithms with more bands can make use of the additional spectral information 
(potentially helping accuracy) they also require a high level of accuracy and stability across a larger set of 
wavebands (O’Reilly and Werdell 2019).  The mapping of optimal algorithm to optical waterclass is done 
on a statistical basis following the round robin multi-metric assessment, rather than a pre-defined 
assumption about which algorithms we might expect to perform best in each optical environment. 
 

2.2.1 Chlorophyll-a	models	
 
Chlorophyll (C) algorithms incorporated into the comparison are described in the following section.   
Chlorophyll is a direct output from the models GSM and GIOP but not for semi-analytical models QAA, 
HOPE and PML.  For the purposes of intercomparison, one can estimate chl from the QAA, and HOPE 
models as a function of aph(443) using a power-law relationship (e.g. Bricaud et al. (1995)), such that  

𝐶 = #
𝑎!"(443)

𝐴 *

#
$

(1) 

where, A and B are positive empirical parameters. Under OC-CCI the empirical parameters were computed 
using the in-situ database and set to A = 0.0549 and B = 0.7429. 
It is worth noting that the empirical conversion from aph(443) to chlorophyll is merely introduced to 
facilitate the comparison, it is not a feature of the original algorithms. In addition to the semi-analytical 
models, a variety of empirical chlorophyll algorithms were also incorporated into the comparison and are 
described below. 
 



Ocean Colour Multi-Mission Algorithm Prototype System (OMAPS) Version:  1.3 

Algorithm Theoretical Baseline Document for In-Water Algorithm selection, processing and blending    Published:28/07/2021 
 

  

 

 

 

 
 

 
Page 11 of 25 

 

2.2.2 Chlorophyll-a	from	semi-analytical	models	through	IOPs.	
Semi-analytical models used in the comparison are described in this section. The term `semi-analytical 
models' will hereafter describe the following set of algorithms (2.2.2.1 to 2.2.2.4). However, we 
acknowledge that some of the models vary in their use of analytical and empirical solutions to solve for the 
IOPs. These semi-analytical models are used to compute the total absorption coefficient (a), combined 
absorption by detritus and coloured dissolved organic matter or gelbstoff (adg), absorption by phytoplankton 
(aph), total backscattering coefficient (bb) and the ratio of phytoplankton absorption at 555 nm to that at 443 
nm aph(555)/aph(443) (see Table 1 for all notations used). The ratio aph(555)/aph(443) was used in this 
comparison as an index of the spectral shape of the phytoplankton absorption coefficient (Sathyendranath et 
al., 2001; Ciotti et al., 2002). The ratio of 555 nm to 443 nm was chosen as these wavelengths typically 
represent the minimum and maximum of the phytoplankton absorption spectra. However, we acknowledge 
that ratios of other wavelengths could have also been used.  
Table 1:Variable Notation 
Notation	 Variable	 Units	
a(λ) Total	absorption	coefficient	 m−1 
aph(λ) Phytoplankton	absorption	coefficient m−1 
adg	(λ) Dissolved	and	detrital	absorption	coefficient m−1 
atot(λ) Total	absorption	coefficient m−1 
bb(λ) Total	backscattering	coefficient m−1 
C Chlorophyll	concentration mg	m−3 
Kd(490) Diffuse	downwelling	attenuation	coefficient m−1 
Rrs	 Remote	sensing	reflectance sr−1	 
𝜃	 Solar	zenith	angle	 Degrees	

 

2.2.2.1 QAA	model	
The algebraic Quasi-Analytical Algorithm (QAA) of Lee et al. (2002) was designed to retrieve IOPs in 
optically-deep waters. The model inversion is based on two steps: the first involves partitioning water 
reflectance into bb and a and the second decomposing a into adg and aph. The model is referred to as `Quasi-
Analytical' as parts of the inversion are based on analytical, semi-analytical and empirical approximations.   
There have been a number of updates to the QAA algorithm over and here we refer to version 6 (as 
implemented in SeaDAS 7.5). 

2.2.2.2 HOPE	model	
In the physics-based Hyperspectral Optimization Process Exemplar (HOPE) model of Lee et al. (1998, 
1999) Rrs is modelled as a function of IOPs, and when influencing the Rrs signal, bottom depth and bottom 
albedo. Unknowns are derived from non-linear optimisation. The spectral shape of bottom albedo is set to 
one of two options (one for sand, another for grass) which is selected based on the Rrs spectrum. The 
phytoplankton absorption coefficients were constrained to lie within an upper and lower boundary (e.g. 
0.002 < aph(443)< 1.0 m-1) which corresponds to a chlorophyll-a range of 0.0053 to 75.8 mg m-3 (Lee et al, 
1998, Brewin et al, 2013).  

2.2.2.3 GSM	model	
The semi-analytical Garver-Siegel-Maritorena (GSM) model was initially developed by Garver and Siegel 
(1997) and later updated by Maritorena et al. (2002). The GSM model retrieves simultaneous estimates of 
chlorophyll (C), adg(443) and bbp(443) from Rrs(l), assuming an underlying bio-optical model and using 
non-linear optimisation. Global parameters of the bio-optical model were initially assigned based on 
simulated annealing on a global quasi-real dataset, which are then used in the non-linear optimisation 
routine. These include a fixed chlorophyll-specific phytoplankton absorption coefficient (aph), Sdg and the 
slope of bbp. The chlorophyll (C), adg(443) and bbp(443) are first retrieved by fitting the bio-optical model to 
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the observed Rrs(l). IOPs at any wavelengths are then obtained using C, adg(443) and bbp(443) and their 
specific shape function from the bio-optical model. The version of the model implemented here is 
parametrised and run according to SeaDAS. 

2.2.2.4 GIOP	model	
The Generalized Inherent Optical Property algorithm (GIOP) (Franz andWerdell, 2010;Werdell et al., 2013) 
model is designed as a test platform for algorithm development and was the result of a NASA IOP 
Algorithm Workshop (see Werdell (2009);Werdell et al. (2013)). Whereas the GIOP model offers the user 
freedom to specify different parameterisations and optimisation approaches, a preliminary configuration for 
GIOP is available which includes: an assigned aph following Bricaud et al. (1995) but normalised by 0.055 
m2 (mgC)-1; a spectral backscattering dependency following the QAA; a fixed spectral slope for adg(l) of 
0.018 nm-1; (Morel et al., 2002) f/Q ratio for zero Sun angle and zero view angle, where Q(l) is the ratio of 
upwelling irradiance to upwelling radiance and f(l) captures the net effects of variation in sea state, 
illumination conditions, and water column content; and Levenberg-Marquardt optimisation.  The 
preliminary configuration is used as default.  It is designed to retrieve spectral IOPs and chlorophyll, and it 
is worth noting that this preliminary configuration could be changed with time. All IOPs (adg, aph, bbp, and 
adg + aph) were constrained to lie within -0.005 and 5 m-1. Retrievals were excluded if the reconstructed Rrs 
spectrum, between 412-555 nm, differed from the observed Rrs spectrum by more than 33 %. 

2.2.2.5 NASA	OC2	
The NASA OC2 chlorophyll algorithm (O'Reilly et al., 2000) is a polynomial algorithm that relates the log-
transformed ratio of remote sensing reflectances (X) to the chlorophyll concentration (C). The OC2 uses a 
two-band blue-green reflectance ratio where  

𝑋 = 𝑙𝑜𝑔#% #
𝑅&'(𝜆()*+)
𝑅&'3𝜆,&++-4

*	 	(2) 

 
and chlorophyll (C) is estimated according to Eq. 3. The coefficient a0 to a4 are sensor dependant, as are the 
wavelengths 𝜆()*+ and 𝜆,&++- (closest wavelengths to 490 and 555 respectively).  As an example, for 
SeaWiFS, the values are a0 = 0.2511, a1= -2.0853, a2 = 1.5035, a3 = -3.1747 and a4 = 0.3383 and 𝜆()*+ =
490 and 𝜆,&++- = 555 (NASA, 2010). 

𝐶 = 10./!0∑ /"2"
#
"$% 3	 (3) 

 

2.2.2.6 NASA	OC3		
The NASA OC3S chlorophyll algorithm (O'Reilly et al., 2000) is similar to the OC2 and OC4 algorithms.  
The OC3 is a polynomial algorithm that relates the log-transformed ratio of remote-sensing reflectances (X) 
to the chlorophyll concentration (C). The OC3S uses a three-band blue-green reflectance ratio where  

𝑋 = 𝑙𝑜𝑔#% #
max	(𝑅&'(𝜆#), 𝑅&'(𝜆4))

𝑅&'3𝜆,&++-4
*	 	(4) 

The bands 𝜆# and 𝜆4 are sensor dependant, being the bands closest to 443 and 490 respectively.  Chlorophyll 
(C) is then estimated according to Eq. 3 where a0 to a4 are again sensor dependant and empirically derived.  	
NASA OC4  
The NASA OC4 chlorophyll algorithm (O'Reilly et al., 2000) is a polynomial algorithm that relates the log-
transformed ratio of remote sensing reflectances (X) to the chlorophyll concentration (C). The OC4v6 uses a 
four-band blue-green reflectance ratio such that: 

𝑋 = 𝑙𝑜𝑔#% #
max3𝑅&'(𝜆#), 𝑅&'(𝜆4), 𝑅&'(𝜆5)4

𝑅&'3𝜆,&++-4
*	 (5) 
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where the bands 𝜆#, 𝜆4and 𝜆5 are also sensor dependant, being the bands closest to 443 and 490 and 510 
respectively.  Chlorophyll (C) is then estimated according to Eq. 3 where, a0 to a4 are empirically derived 
and are sensor dependant. 

2.2.2.7 OC4ME	
The OC4ME is a MERIS chlorophyll band-ratio algorithm (Morel and Antoine, 2011). Like the OC4, it is a 
four-band polynomial algorithm that relates the log-transformed ratio of irradiance reflectance (R) to the 
chlorophyll concentration (C).  It is important to note that unlike the OC4 algorithm, this algorithm uses the 
irradiance reflectance which is the subsurface reflectance ( Eu(0−)/Ed(0−) ) rather than the above surface Rrs.  
When implemented in the OLCI baseline processing the irradiance reflectance and chlorophyll-a 
concentration are calculated in an iterative loop as the estimate of R depends upon C and the estimate of C 
depends upon R.  Though this iterative algorithm is used as the default in OCLI baseline processing, the 
algorithm code has not been provided to the OMAPS project.  As such, it could be included in a round robin 
comparison (following matchup extraction) but cannot currently be easily added to the OMAPS processor as 
we do not have an executable binary.  We have included a description here for completeness but for further 
information we refer readers to Morel and Antoine (2011). 
 

2.2.2.8 OCI	
The OCI model refers to the chlorophyll algorithm of Hu et al. (2012) as modified for use by NASA. This 
empirical algorithm was designed to improve the estimate of chlorophyll (C) in the global ocean at 
concentrations <0.2 mg m-3. For low chlorophyll concentrations (<0.15 mg m-3), the algorithm uses a colour 
index (CI), which is defined as the difference between Rrs in the green region of the visible spectrum and a 
reference formed linearly between Rrs in the blue and red region of the visible spectrum. For high 
chlorophyll concentrations (>0.2 mg m-3), the OCI conforms to the OC4 algorithm, and for concentrations 
>0.15 and <0.2 mg m-3 a mixture of the colour index (CI) and the OC4 algorithm is used, allowing a smooth 
transition from the CI to the OC4 with increasing chlorophyll. 

2.2.2.9 OCI2	
The OCI2 refers to an updated parameterisation of the OCI following the work of Hu et al (2019).  This 
involves a new parameterisation of the CI coefficients and a blending between concentrations of 0.25 and 
0.4 mgChl m-3. 

2.2.2.10 OC5	
The OC5 algorithm pays a particular attention to the effect of the suspended matters on the retrievals of the 
Chlorophyll-a from satellite radiances. It includes an empirical parameterisation relating absorption of 
CDOM and scattering of TSM to the 412 and 555 nm channels (Gohin et al., 2002, 2005). 
 

2.2.3 Kd	models	
 
Two Kd models are provided within the OMAPS processor system.  Both can be used to derive Kd(490) 
estimates from input level 2 Rrs data. 
 

2.2.3.1 Kd_Lee	
 
The first, following on from the OC-CCI heritage, is the Kd model of Lee et al (2013): 
 

𝐾6(𝜆) = (1 + 𝑚% ∗ 𝜃') ∗ 𝑎(𝜆) + 31 − 𝛾 ∗ 𝜂7(𝜆)4 ∗ 𝑚# ∗ 31 − 𝑚4 ∗ 𝑒89&∗/(<)4 ∗ 𝑏((𝜆)	 (6)  
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As can be seen in equation 6, the Kd algorithm requires estimates of absorption and scattering as input.  
Within the OMAPS processor these are calculated using the QAA v6 model (IOCCG, 2014).  The QAA 
model is used as it was shown to perform best in a round robin intercomparison as part of the OC-CCI 
project (Brewin et al., 2015).  The latest version of the QAA also takes account of raman scattering on the 
Rrs signal (Lee et al., 2013) where: 

𝑅&' =
𝑅&'>

1 + 𝑅𝐹	
(7) 

 
Where Rrs is the remote-sensing reflectance without contributions from raman scatter, 𝑅&'>  is the remote 
sensing reflectance (including raman contribution) and RF is a raman correction factor.  RF is calculated 
following Lee et al. (2013) with the equation: 

𝑅𝐹(𝜆) = 𝛼(𝜆) K
𝑅&'> (440)
𝑅&'> (550)

L + 𝛽#(𝜆)3𝑅&'> (550)4
?'(<)	 (8) 

Where α, β1, and β2 are were derived for a set of wavelengths using hydrolight simulations (see table 2 in 
Lee et al., (2013)) and are then interpolated to nearby wavelengths as required. 

2.2.3.2 Kd_Zhang	
 
The second Kd model codified in the Kd module of the online processor system is the model of Zhang and 
Fell (2007).  This second model computes Kd(490) using a polynomial equation, switching coefficients 
based on a reflectance ratio: 

𝐾6(490) = O
108%.AB58#.BCD28%.#%#2'8%.A##2& 	𝑖𝑓 𝑅&'(490)𝑅&'(560)

≥ 0.85

108%.%DB8#.5%428%.4BE2'8%.%4#2& 	𝑖𝑓	 𝑅&'(490)𝑅&'(560)
< 0.85

		 	 (9) 

 
Where 𝑋 = log#%(

F()(BD%)
F()(CG%)

)	if F()(BD%)
F()(CG%)

≥ 0.85 and X = log#%(
F()(BD%)
F()(CG%)

) if F()(BD%)
F()(GGC)

< 0.85.  The original work 
of Zhang and Fell (2007) was parameterised using NOMAD data but used channel mapping, treating bands 
as interchangeable, between the wavelength sets of (555,560,565) and (665,670) so these equations are 
sometimes written elsewhere with 555 instead of 560 and 670 instead of 665, but no modification is 
required. 
 
Following an OC-CCI round robin it was decided that a single Kd(490) algorithm, that of Lee et al.(2013), 
was optimal.  This means that no blending was required for this product and the default algorithm for Kd in 
the OMAPS processor is set to the Lee algorithm. 

3 OC	Algorithm	Round	Robin	procedure	

3.1 Matchups and filtering 
As with the associated atmospheric correction round robin, a points scoring classification is used for model 
comparison to rank objectively the performance of the candidate in-water algorithms. Each variable is tested 
independently. For a given variable, such as chl, multiple algorithms are used to process the Rrs data to in-
water product values following atmospheric correction of remotely-sensed ocean-colour data.  These values 
are then matched from the level-2 processed data to the in situ database.  The estimated variable is then 
compared with the corresponding in situ value using each statistical test and a score is assigned for each test 
ranging from zero to two.  
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These tests are described in the following sections. If an algorithm is not capable of estimating the variable, 
it was given zero points for that test. 
 
The samples are only compared when the measured and estimated variables (if produced by the model) 
conformed to the following variable specific requirements, which represent extreme upper and lower 
boundaries fixed to avoid the influence of spurious results on the statistical properties: 

• C > 0.001 and < 200 mg m-3 

• Kd > aw (Pope and Fry, 1997) and < 10.0 m-1 

The lower boundary for C is based on the absolute accuracy for HPLC detection if all protocols are strictly 
followed (Aiken et al., 2009). The exclusion of spurious results was conducted on a variable-by-variable 
basis.  

3.2 Metrics and scoring 

3.2.1 Statistical	Tests	
To test the performance of the bio-optical algorithms the following univariate statistical tests were adopted 
that are commonly used in comparisons between modelled and in situ data (Doney et al., 2009; Friedrichs et 
al., 2009).  It is important to bear in mind that some variables (such as chl-a) are log-normally distributed at 
the global scale.  This means that for those variables the statistics and scoring should be performed on log-
transformed values to allow the statistical relationships to hold true. 
 
The following variables can be assumed to be log-normally distributed at the global scale: 

• Chlorophyll-a 
• aph 
• Kd 
• adg 
• atot 

 

3.2.1.1 Pearson	correlation	coefficient	
The correlation coefficient r (also called Pearson's product moment correlation) is calculated according to: 

𝑟 =
1
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⎣
⎢
⎢
⎢
⎡ 𝑋HI − ^

1
𝑁∑ 𝑋JIK

JL# `

a 1
𝑁 − 1∑ b𝑋M9 − ^1𝑁∑ 𝑋)IK

)L# `c
4

K
ML# d

%.C

⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡ 𝑋HN − ^

1
𝑁∑ 𝑋9NK

9L# `

a 1
𝑁 − 1∑ b𝑋-N − ^

1
𝑁∑ 𝑋ONK

OL# `c
4

K
-L# d

%.C

⎦
⎥
⎥
⎥
⎤K

HL#

	 (6) 

where, X is the variable and N is the number of samples. The superscript E denotes the estimated variable 
(from the algorithm) and the superscript M denotes the measured variable (from the in-situ dataset). Note 
that the Pearson correlation coefficient assumes a linear relationship between variables and normal 
distributions. The correlation coefficient may take any value between -1.0 and 1.0.  

3.2.1.1.1 Scoring	
The r test involved determining whether the r-value for each model was statistically lower than the model 
with an r-value closest to 1 (the best model). This was determined using the z-score. The z-score may be 
used to determine if two correlation coefficients are statistically different from one another (Cohen and 
Cohen, 1983). 
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Knowing the r-value for two respective models (r1 and r2, for model 1 and 2 respectively) and knowing the 
number of samples used to determine the r-values (n1 and n2) one can determine the z-score using the 
Fisher's r-to-z transformation. 
 
Making use of the sample size employed to obtain each coefficient, these z-scores of each r-value (z1 and z2) 
can be used to compute the overall z-score (Cohen and Cohen, 1983), such that: 

𝑧# = 0.5 log i
1 + 𝑟#
1 − 𝑟#

j	 (7)	 

𝑧4 = 0.5 log i
1 + 𝑟4
1 − 𝑟4

j	 (8)	 

𝑧'PO&+ =
z# − z4

^b 1
𝑛# − 3

c b 1
𝑛4 − 3

c`
%.C 	 (9)	

 

Having determined the z-score, this can be converted into a p-value assuming a normal distribution. For the 
model comparison, a two-tailed test is used and the score for each model is based upon the p-value as 
follows: 

• 0 points if p-value for the model tested < 0.01 (i.e statistically different to the best model) 

• 1 point if p-value for the model tested is ³ 0.01 (i.e statistically similar to the best model) 

• 2 points if p-value for the model tested is ³ 0.05 (i.e statistically very similar to the best model).  
This is not cumulative with a point for being ³ 0.01. 

3.2.1.2 Root	Mean	Square	Error		
The absolute Root Mean Square Error (Y) is calculated according to: 

Ψ =	n
1
𝑁Z

(𝑋HN−𝑋HI)4
K

HL#

o

%.C

	 (10) 

The scoring for RMSE is covered in section 3.2.1.4 and given that Y and Δ are strongly related and the 
multi-metric approach should not score both of these metrics, only one or the other, and the scoring 
approach is the same for both.  Given that RMSE is effectively composed of the same information contained 
within the bias and the unbiased-RMSE then we will not use RMSE in the scoring scheme. 

3.2.1.3 Bias		
The bias (d) between model and measurement can be expressed according to: 

δ =
1
𝑁Z^(𝑋HI−𝑋HN)`

K

HL#

	 (11) 

3.2.1.3.1 Scoring	
The closer the model bias (δ) is to the reference value of zero implies that the model corresponds well with 
the in situ data. However, a model could have a δ close to the reference value of zero, when compared with 
another model, but have a much larger 95 % confidence interval, implying lower confidence in the retrieved 
δ. Therefore, the following points classification was introduced for the bias: 
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• 0 points = the 95 % confidence interval of δ for a particular model is higher than the 1.5 times the 
smallest 95 % confidence interval of any model. In addition to this, the modulus of the bias ± its 95 
% confidence interval did not overlap with zero. 

• 1 point = either, the 95 % confidence interval of δ for a particular model less than 1.5 times the 
smallest model 95 % confidence interval, or the modulus of the bias ± its 95 % confidence interval 
overlaps with zero, but not both cases. 

• 2 points = the 95 % confidence interval of δ for a particular model is less than 1.5 times the smallest 
model 95 % confidence interval and the bias ± its 95 % confidence interval overlaps with zero. 

 
For both bias and centre-pattern Root Mean Square Error statistics the 95% confidence interval is computed 
from the standard error of the mean and the t-distribution of the sample size such that: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑡%.%4C,-8#
𝑆-
√𝑛

	, (12) 

Where Sn is the standard deviation of the error, n is the number of matchups and t is the two-tailed t-
distribution.  

3.2.1.4 Centre-pattern	Root	Mean	Square	Error		
The absolute centre-pattern (or unbiased) Root Mean Square Error (Δ) is related to the bias and rmse as: 

Δ4 = Ψ4 − δ4	 (13) 

It describes the error of the estimated values with respect to the measured ones, regardless of the average 
bias between the two distributions. 
 

3.2.1.4.1 Scoring	
In addition to computing Ψ and Δ for each model, it is possible to determine the confidence levels in the Ψ 
and Δ, which provide an indication of how confident one is in the statistics. The confidence levels are 
computed from the standard error of the mean percentage and the t-distribution of the sample size. 
Confidence levels provide a powerful way of highlighting differences and similarities between models. If 
the confidence intervals of two or more models overlap, then it can be assumed that the models have a 
statistically similar Ψ or Δ at the given confidence interval. For each model, the 90 % and 95 % confidence 
intervals are computed for both Ψ and Δ. Points for each model are awarded according to: 

• 0 points = Ψ or Δ for the model tested is statistically higher than the Ψ or Δ for the best model (no 
overlap with a p-val of 0.01). 

• 1 point = Ψ or Δ for the model tested is statistically similar to the Ψ or Δ for the best model (overlap 
with a p-val of 0.01 ).  

• 2 points = Ψ or Δ for the model tested is statistically very similar to the Ψ or Δ for the best model 
(overlap with a p-val of 0.1. 

As mentioned in section 3.2.1.2 we should not use both Ψ and Δ in the scoring scheme as we do not want to 
overweight or double score a single metric of performance.  We have chosen to use bias (δ)	and unbiased 
RMSE (Δ) as the RMSE (Ψ) can be derived from the other two statistics and using both δ	and	Δ gives a 
separation between metrics relating to accuracy and precision. 

3.2.1.5 Slope	(S)	and	Intercept	(I)	of	a	Type-2	regression	
The performance of a model with respect to in situ data can be tested using linear regression between the 
estimated variable (from the model) and the measured variable (in situ data), such that: 

XR = XS𝑆 + 𝐼	 (14) 
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A slope (S) close to one and an intercept (I) close to zero is an indication that the model compares well with 
the in situ data. Type-1 regression typically assumes the dependent variable (in situ data) is known infinitely 
well, when in reality the in situ data are also affected by uncertainties (e.g. problems with in situ data 
sampling techniques) that are difficult to quantify. Therefore, we use a Type-2 regression, which instead of 
minimising the vertical distance between independent data and linear fit (as in Type-1 regression), 
minimises the perpendicular distance between independent data and linear fit. 

3.2.1.5.1 Scoring	
In addition to computing the intercept (I) and the slope (S) from Type-2 regression, it is possible to compute 
the standard deviation on I and S.  The closer the intercept (I) is to the reference value of zero and the closer 
the slope (S) is to the reference value of one, the better the fit between variables. Similar to the Bias, a model 
could have an intercept closer to the reference value of zero and a slope closer to the reference value of one, 
when compared with another model, but have a much larger standard deviation on its retrieved parameters, 
implying lower confidence in the fit. Therefore, to account for both these possibilities the following points 
classification is introduced for the slope (S) parameter: 

• 0 points = the standard deviation of the S parameter for a particular model is higher than 1.5 times 
the smallest standard deviation in S. In addition to this, the S parameter ± its standard deviation does 
not overlap with 1. 

• 1 point = either, the standard deviation of the S parameter for a particular model is less than 1.5 times 
the smallest standard deviation or S ± its standard deviation overlaps with 1, but not both cases. 

• 2 points = the standard deviation of the S parameter for a particular model is less than 1.5 times the 
smallest standard deviation, and, the S parameter ± its standard deviation overlaps with 1.\ 
 

The following points classification was introduced for intercept (I) parameter: 
• 0 points = the standard deviation of the I parameter for a particular model is higher than 1.5 times the 

smallest standard deviation in I. In addition to this, the I parameter ± its standard deviation does not 
overlap with that zero. 

• 1 point = either the standard deviation of the I parameter for a particular model is less than 1.5 times 
the smallest standard deviation, or the I parameter ± its standard deviation overlaps zero, but not both 
cases. 

• 2 points = the standard deviation of the I parameter for a particular model is less than 1.5 time the 
smallest standard deviation and the I parameter ± its standard deviation overlaps with zero. 

 

3.2.1.6 Percentage	of	possible	retrievals		
Considering that algorithms chosen for climate studies should perform well routinely, and globally, and 
should not be a source of more gaps in the data than would be the case if other algorithms were used, the 
percentage of possible retrievals (h) is an important criterion that should be considered in the comparison, 
calculated according to: 

𝜂 =
𝑁N

𝑁I 100	 (15) 

 

where NE represents the number of retrievals using the model and NM represents the number of available 
matched in situ data points.  

3.2.1.6.1 Scoring	
To compare the percentage of possible retrievals (h) between models, highest percentage and standard 
deviation of retrievals for all models was used. The following points criteria were set-up: 
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• 0 points = h of a model lies further than 1 standard deviation below the maximum algorithm h. 
• 1 point = h of a model lies within 1 standard deviation of the maximum h. 
• 2 points = h of a model is equal to the maximum h. 

 

3.3 Bootstrapping and multi-metric scoring 
To rank the performance of each model with reference to a particular variable, all points were summed over 
the set of statistical tests used. The total score for each model was then normalised to the highest score for a 
single model. A score of one indicates the model scored the highest total number of points across all tests, 
with values less than 1 showing the points score of each model relative to the highest achieved. Figure 2 
shows a flow-chart illustrating the methodology of the scoring system used to compare models. 

 
Figure 2: Flow chart of multi-metric scoring approach for Ocean Colour algorithm comparison 

 

The stability of the scoring system, and the sensitivity of the scores, was tested using the method of 
bootstrapping (Efron, 1979; Efron and Tibshirani, 1993). This involves using sampling with replacement to 
randomly re-sample the in situ data to create 1000 new datasets, each the same size as the original dataset. 
The quantitative statistical methodology was then re-run for each new dataset (Monte-Carlo approach) and 
from the resulting distribution of scores, a mean score for each model was computed. Additionally, a 2.5 % 
and a 97.5 % interval on the bootstrap distribution is taken and assumed to be the confidence limits on the 
mean score for each model, rather than standard deviations on the bootstrap distribution, to avoid 
misinterpretation of results should the bootstrap distribution not follow a normal distribution or be skewed, 
for instance from the presence of outliers in the data. 

3.4 Division by water class 
The division of waters into optical types is an established concept in marine sciences. Morel and Prieur 
(1977) distinguished two water types, those where bulk optical properties are dominated by phytoplankton 
and (Case-1) and those where bulk optical properties are uncoupled from phytoplankton (Case-2). This early 
division led to the development of ‘case- 1’ and ‘case-2 algorithms which were tailored to produce the best 
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results under a given set of assumptions about the optical nature of the waters in question. With the 
introduction of multidimensional clustering techniques applied to remote sensing data (Moore et al 2009, 
2014), this classification of waters has become non-binary with >10 optical water types (OWT) identified in 
both open-ocean (Jackson et al., 2017) and inland-water (Spyrakos et al., 2018) environments. 
The initial comparison and scoring of algorithms uses all the available in situ data. This in situ database has 
been collected in a variety of environments from open-ocean, clear waters to coastal environments with 
complex optical properties. In spite of a great deal of effort it is known that algorithms optimised to work in 
very clear waters are likely to perform worse in highly turbid waters, especially when compared to 
algorithms tailored for such environments. In order to assess the performance of the algorithms across a 
range of optical conditions the matched in situ and Rrs data are divided based on the dominant optical water 
class (for example, those defined in the OC-CCI processing chain).  Each optical class subset was then run 
through the same scoring processing as the total dataset. 

4 Blending Algorithm description 

4.1 Blending outline 
The product blending processor will sit within the ocean colour processing subsystem.  It must be used after 
the Rrs spectra are assigned fuzzy memberships (Bezdek, 1997) to a pre-defined set of optical water classes 
(Jackson et al. 2017).   It is also a prerequisite that an in-water algorithm round robin has been performed for 
the candidate product algorithms, such as those performed as part of the OC-CCI production process, in 
order to identify the optimal product algorithm per for each water class. This should be possible using the 
round-robin modules included in the OMAPS offline processor system. 
 
Once waterclass memberships and per-waterclass optimal algorithms are known, one can apply equation 1 
to calculate the weighted product estimate per pixel using n waterclasses: 
 

𝑃7 =
∑ 𝑃H𝑊H
HL-
HL#

∑ 𝑊H
HL-
HL#

, (1) 

 
 
where Pw is the weighted product value, Pi is the product estimated using the optimal algorithm for water 
class i and Wi is the pixel membership to water class i.  This is the same as the weighting scheme used by 
Moore et al (2014) and Jackson et al (2017).   
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Figure 3: Schematic diagram of application of algorithm blending to pixel spectrum 

4.2 Blending inputs 
As shown in Figure 3, the blending algorithm requires a single source of data as input along with at least two 
predefined candidate algorithms, an optical waterclass set and information relating to the performance of 
candidate algorithms per water class.  The input data is spectral Rrs which should contain a bandset that is 
sufficient for both the comparison to the waterclass set and use with all candidate algorithms.   
 
As an example, we might consider a blended chlorophyll-a product.  P1, P2, P3 could be the OC4v6 NASA 
algorithm, a neural network derived Chl-a estimate and Chl-a from a semi empirical algorithm respectively.  
 
The waterclass set used in the default implementation of the initial OMAPS processor for OLCI processing 
is shown below in Figure 4 and was created as part of the OC-CCI v5.0 processing for use with a 
MERIS/OLCI waveband set.  This waterclass set can likely be improved upon for OLCI specific processing 
but was chosen as an initial set as it has been used operationally with an OLCI data stream.  Future sets 
might be non-normalised to the spectral integral, make use of more of the OLCI wavebands and contain a 
different number of classes.  Once a new waterclass set is created it can be easily called upon by editing the 
relevant configuration file. 
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Figure 4: Example Optical water class set using 6 bands and consisting of 14 clusters. 

4.3 Blending outputs 
The result of running the blending processor is that a single additional variable is added to the netCDF file 
(or data structure).  A single blended chlorophyll-a variable can be created from any given set of algorithms, 
set within a configuration file.  In the OMAPS offline processor the default name for the output blended 
chlorophyll-a product is “chlor_a_blended”. 

4.4 Algorithm demonstration 
As a demonstration of the application of this blending technique we have processed a granule 
(S3A_OL_1_EFR____20180716T073803_20180716T074103, covering the Red Sea), shown in Figure 5, 
using 8 candidate chlorophyll-a algorithms and blended four of them (OC2, OCx, OCI, and OCI2) into a 
blended chlorophyll-a product.  Keep in mind that the OCI, OCI2 and OCx algorithms are themselves 
compound algorithms that switch between different empirical relationships.  The top middle panel of Figure 
5 shows the percentage increase or decrease in the blended product compared to the OCI2 only product.  
There is little difference in much of the clear waters of the Red Sea but as the waters become more 
chlorophyll-a rich in the north east and south east areas of the image we can see that the blended product is 
increased relative to the OCI2 estimates as the other algorithms begin to increase in weighting.  The 
weighting factors for wach of the 4 contributing algorithms is shown in Figure 6.  
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Figure 5: Demonstration of blended chlorophyll-a product to single algorithm products.  The blended product is highlighted in green and the 
contributing algorithms are the OC2, OCx, OCI and OCI2 (in orange, yellow, blue and purple respectively).  The top middle panel shows the 
difference between the blended product and the HuCI2 algorithm (with blue being a positive difference, red negative and small differences in 
white (red and blue colour scales capped at ±40%). 
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Figure 6: Weighting factors for OC2, OCI2, OCx and OCI algorithms as used in the blending for Figure 5.  Weighting factors are derived from 
summed subsets of waterclass memberships relative to total water summed waterclass memberships. 
 

4.5 Additional considerations 

4.5.1 Product	Uncertainties	
In an ideal system there would be a comprehensive error propagation, beginning with known instrument 
performance, to provide final product uncertainties.  This is not yet available for within ocean colour remote 
sensing (IOCCG 2019), though efforts are ongoing.  An alternative approach used by the OC-CCI project is 
to treat the per-variable uncertainties of root mean square difference (RMSD) and bias as products in their 
own right, to be blended in the same manner as the chlorophyll-a estimates.  In this instance one can use the 
waterclass membership weighting as given in equation 1, but the candidate algorithm estimates are replaced 
by ‘per-waterclass’ uncertainty statistics.  An example for pixel bias (d) is given in equation 2: 
 

d =
∑ dH𝑊H
HL-
HL#

∑ 𝑊H
HL-
HL#

, (1) 

 
where di is the waterclass specific bias estimate, derived from matched in-situ data. This is possible using 
the same in-situ matchup database that was used to perform the round-robin exercise and designate the best 
performing algorithm per optical waterclass. 
 
The improved performance in the final product through blending should reduce the class uncertainties, 
therefore reducing the final per-pixel uncertainty estimates.  Additionally, the ability to capture some of the 
structure in the error distribution across water classes (for example, some chl algorithms tend to 
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underestimate at high chl and overestimate at low chl concentrations) allows the water class approach to 
have a better representation of per pixel uncertainty than estimates using all in-situ data to give a single 
uncertainty estimate. 
 
Figure 7 shows that the product blending has a net improvement on the product uncertainty.  The effect is 
not uniform in time or space as the abundance of different water classes varies through the year and in some 
cases the blended product has a greater RMSD than the non-blended product, though this is certainly not the 
dominant situation.  

 
Figure 7: Blended Chlorophyll-a product has better performance (lower RMSD) in almost all water classes and especially in those dominating 

the largest area of the global oceans (water classes 1-5)  
 

4.5.2 Limitations	and	requirements	for	in-situ	data	
 
As this method relies on knowledge of algorithm performance across a range of optical conditions there is a 
strong dependence on a large, high quality in-situ database for matching against the satellite data record. 
This requirement is further emphasised if the waterclasses and blending is also used to assign uncertainty 
estimates.  There is therefore an ongoing requirement for in-situ data collection across a range of optical 
water types in order to improve the per waterclass performance characterisation, especially as new sensors 
are launched and new algorithms developed 


