

Potential for multi-mission matchups at candidate sites for Copernicus <u>OC-SVC</u> infrastructure location

May 17, 2022

Juan Ignacio Gossn (EUMETSAT)

Frédéric Mélin (JRC)

Ewa Kwiatkowska (EUMETSAT)

David Dessailly (EUMETSAT)

- 1. This presentation is a part of the material requested by the **Expert Review Board** to support a recommendation for the location of the **Copernicus OC-SVC infrastructure**.
- 2. This presentation shows **statistical analyses of Copernicus candidate OC-SVC locations** to generate matchups with in situ infrastructure measurements
- 3. The analyses follow **standard community protocols for OC-SVC** matchup screening and vicarious gain generation (also used for Copernicus S3 OLCI)
- 4. Matchups with **four global Ocean Colour missions** are considered:
 - I. Copernicus Sentinel-3 OLCI-A,
 - II. Copernicus Sentinel-3 OLCI-B,
 - III. US Aqua MODIS (MODISA), and
 - IV. US Suomi-NPP/VIIRS (VSNPP)
- 5. The **potential** for OC-SVC matchups is emphasized, as the number of the actual matchups could only be determined if also in situ infrastructure measurements at those sites were available

Copernicus candidate OC-SVC site locations

Extractions

+ **MOBY** (Lanai, Hawaii) \rightarrow an existing reference OC-SVC site operated by NOAA

Level 2 operational products

OLCI-A [OL_L2M.003.01]: April-2016 to July-2021 OLCI-B [OL_L2M.003.01]: April-2018 to July-2021 MODISA [standard, OBPG-GSFC]: January-2005 to Dec-2009 VSNPP [standard , OBPG-GSFC]: January-2013 to Dec-2020

Lat/Ion location of Copernicus candidate OC-SVC sites

StationID	Country	Latitude	Longitude
Antikythera	Greece	36.20	23.55
BOUSSOLE	France	43.37	7.90
El-Hierro	Spain	27.59	-18.16
Lampedusa-LMP1	Italy	35.50	12.80
Lampedusa-LMP2	Italy	35.75	12.35
Lampedusa-LMP3	Italy	35.85	12.73
Lampedusa-LMP4	Italy	35.78	13.07
Madeira-OPT	Portugal	32.62	-17.27
Madeira-SOW	Portugal	32.25	-17.00
MOBY	US	20.82	-157.19
MSEA-N	Greece	35.74	25.07
MSEA-S	Greece	34.00	25.00

Extractions

Level 2 operational products

OLCI-A [OL_L2M.003.01]: April-2016 to July-2021 OLCI-B [OL_L2M.003.01]: April-2018 to July-2021 MODISA [standard]: January-2005 to Dec-2009 VSNPP [standard]: January-2013 to Dec-2020

An existing reference OC-SVC site operated by NOAA

Methods: EDB (Extraction Data Base) workflow

← → C ☆ 🔒 gitlab.eumetsat.int/OC/External/edb

A common workflow was developed for all the L2 products: **EDB (Extraction Data Base)**, repository accessible at EUMETSAT's GitLab space:

https://gitlab.eumetsat.int/OC/External/edb

(restricted access to Expert Review Board and EUMETSAT staff)

EDB:

1) Locates the extraction window.

2) Produces "minifiles" centred at this window, following pre-existing EUMETSAT formats, but extended to MODIS/VIIRS.

3)Computes and reports all the statistics following a standard common approach among sensors.

🔶 GitLab 🗏 Menu			🖸 🛩 51								
E EDB											
 Project information Repository 	minor change on the flag-set-to-mask fi Juan Ignacio Gossn authored 1 week ago		0fbfed30 [⊖								
To Issues 0	⊥ Upload File 🕞 README 🖽 Add LICEN	SE Add CHANGELOG Add CONTRIBUTING Add Kubernet	tes cluster								
) Merge requests 0	Set up CI/CD Set up CI/CD										
D Security & Compliance	Name	Last commit	Last update								
Deployments	₽ .idea	minor change on the flag-set-to-mask functi	1 week ago								
D Monitor	PDU_minifile_config	Minor changes to the protocols files, added	1 week ago								
Infrastructure	b_pycache_	minor change on the flag-set-to-mask functi	1 week ago								
Packages & Registries											
] Wiki	🖻 examples	added readme and examples directory 1 mor									
Snippets	P protocois	minor change on the flag-set-to-mask functi	1 week ago								
Settings	e EDB2plot.py	minor change on the flag-set-to-mask functi	1 week ago								
	- OLCI_BRDF.py	Initialized EDB (Extraction Data Base)	1 month ago								
	PDU2EDB_common.py	minor change on the flag-set-to-mask functi	1 week ago								
	PDU2minifile.py	Changes in Aqua protocols following Fred M	1 month ago								
	a main.py	minor change on the flag-set-to-mask functi	1 week ago								
	🚔 minifile2EDB.py	minor change on the flag-set-to-mask functi	1 week ago								
	0 readme.md	bug fix in minifile2EDB,py and minor changes	1 month ago								
	P readme.md										
	Extraction Data Base workflow (EDB)										
	Purpose: Designed to calculate statistics to compare performance of various potential SVC location sites under various extraction protocols, with S3x/OLCI (IPF), Aqua/MODIS (SeaDAS-I2gen), and Suomi-NPP/VIIRS (SeaDAS-I2gen).										
	Run the code	Run the code									
	1. You need a Linux environment likely (it should work for Mac or Windows, but I haven't checked)										
≪ Collapse sidebar	installed by default] c. glob [should be ins	in your Python/conda environment: a. os [should be installed by default] b. sy tailed by default] d. datetime [should be installed by default] e. math [should / default] g. confiparser [should be installed by default] h. numpy i. scipy j. net	be installed by								

Methods: Extraction and screening criteria → OLCI-A&B

Standard protocol

1) Protocol "SVC_VIS_PP"

Description: Post-processing conditions applied over extractions to estimate SVC VIS gains

- Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicariouscalibration-tool; eumetsat.int/OC-SVC).
- o Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)

Screening conditions

- Window size = 5 × 5
- **SZA** < 70 and **OZA** < 56
- Flags = CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, INVALID, COSMETIC, SATURATED, SUSPECT, HISOLZEN, MEGLINT, HIGHGLINT, SNOW_ICE, WHITECAPS, ANNOT_ABSO_D, ANNOT_MIXR1, ANNOT_TAU06
- Number of valid pixels = 25 (100%) [valid: non-flagged, low zeniths]

 CV[ρ_w(412, 443, 490, 510, 560 nm)] < 15% 	SZA = Solar Zenith Angle
• AOT(865 nm) < 0.15	OZA = Observation Zenith Angle
• $CHL_{OC4ME} < 0.2 \text{ mg/m}^3$	CV = Coefficient of Variation = Standard deviation/Mean x 100%
	ρ _w (x nm) = Water reflectance at x nm
	AOT(x nm) = Aerosol optical thickness at x nm
	CHL_x = Chlorophyll concentration, algorithm X

Methods: Extraction and screening criteria → Aqua/MODIS

Standard protocol

1) Protocol "SVC_VIS_PP"

Description: Post-processing conditions applied over extractions to estimate SVC VIS gains

- Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicariouscalibration-tool; eumetsat.int/OC-SVC).
- o Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)

Screening conditions

- Window size = 5×5
- **SZA** < 70 and **OZA** < 60
- Flags = ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, NAVWARN, MAXAERITER, CHLWARN, ATMWARN, SEAICE, NAVFAIL, ABSAER, MODGLINT
- Number of valid pixels = 25 (100%) [valid: non-flagged, low zeniths]

 CV[ρ_w(412, 443, 488, 531, 547 nm)] < 15% 	SZA = Solar Zenith Angle
• AOT(869 nm) < 0.15	OZA = Observation Zenith Angle
• $CHL_{OCI} < 0.2 \text{ mg/m}^3$	CV = Coefficient of Variation = Standard deviation/Mean x 100%
	ρ_w(x nm) = Water reflectance at x nm
	AOT(x nm) = Aerosol optical thickness at x nm
	CHL_x = Chlorophyll concentration, algorithm X

Methods: Extraction and screening criteria → Suomi-NPP/VIRS

Standard protocol

1) Protocol "SVC_VIS_PP"

Description: Post-processing conditions applied over extractions to estimate SVC VIS gains

- Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicariouscalibration-tool; eumetsat.int/OC-SVC).
- o Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)

Screening conditions

- Window size = 5×5
- **SZA** < 70 and **OZA** < 60
- Flags = ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, NAVWARN, MAXAERITER, CHLWARN, ATMWARN, SEAICE, NAVFAIL, ABSAER, MODGLINT
- Number of valid pixels = 25 (100%) [valid: non-flagged, low zeniths]

 CV[ρ_w(410, 443, 486, 551 nm)] < 15% 	SZA = Solar Zenith Angle
• AOT(862 nm) < 0.15	OZA = Observation Zenith Angle
• $CHL_{OCI} < 0.2 \text{ mg/m}^3$	CV = Coefficient of Variation = Standard deviation/Mean x 100%
	ρ_w(x nm) = Water reflectance at x nm
	AOT(x nm) = Aerosol optical thickness at x nm
	CHL _x = Chlorophyll concentration, algorithm X

Results with the standard protocol (SVC_VIS_PP)

- 1. Global results (number of valid extractions for each site, rankings)
- 2. Average number of extractions per month
- 3. Seasonality of valid extractions

Global results, OLCI-A and OLCI-B

Global results, MODISA and VSNPP

MODISA (SVC_VIS_PP)

VSNPP (SVC_VIS_PP)

Global results in seasons (SVC_VIS_PP)

OLCI-A: SVC_VIS_PP

Saaana/Sitaa	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	5.2	1.9	11.8	1.5	1.3	1.9	2.3	8.7	4.1	12.6	5.6	6.4
MAM	8.7	2.1	14.7	6.9	7.3	7.1	7.5	12	7.9	13.9	8.9	9.7
JJA	18.6	13.1	15.3	11.8	10.8	11.4	12.9	17.6	10.6	14.3	19.1	18.7
SON	9.9	9.9	15.3	7.3	9.6	9.4	9.1	13.5	10.2	14.3	10.6	12.8
Yearly	42.3	27	57	27.6	29.1	29.9	31.8	51.8	32.9	55.1	44.3	47.5

OLCI-B: SVC_VIS_PP

Seasons/Sites Antiky	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.8	1.6	10.2	2.9	1.9	2.9	1.6	8.1	5.5	16.6	6.1	7.4
MAM	10.0	1.3	14.7	8.0	8.9	8.6	8.6	12.3	7.1	15.0	12.0	11.0
JJA	21.3	13.9	13.8	12.5	8.3	12.8	10.5	17.8	13.6	13.4	21.0	18.4
SON	11.6	8.7	13.8	7.0	8.6	8.3	6.7	13.0	9.1	13.8	12.3	12.9
Yearly	47.8	25.6	52.5	30.4	27.8	32.6	27.5	51.2	35.3	58.8	51.4	49.8

• Highly consistent seasonal and overall performances between OLCI-A and OLCI-B

Global results in seasons (SVC_VIS_PP)

MODISA: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.0	4.4	6.2	1.8	1.0	1.0	1.6	5.8	4.6	12.6	7.0	5.8
MAM	14.6	3.0	6.8	7.4	10.2	4.6	9.8	4.4	7.0	5.6	15.0	13.8
JJA	29.4	11.4	5.4	11.2	15.4	8.6	17.8	9.0	9.4	4.0	31.6	25.0
SON	16.2	6.8	7.8	7.4	9.2	9.0	9.4	8.4	8.4	8.0	16.4	17.6
Yearly	64.2	25.6	26.2	27.8	35.8	23.2	38.6	27.6	29.4	30.2	70.0	62.2

VSNPP: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	10.9	4.4	9.9	2.1	2.1	2.3	4.5	8.0	4.4	15.9	10.0	7.0
MAM	12.5	2.5	6.3	9.1	10.5	7.3	8.8	5.6	6.0	7.8	10.5	10.3
JJA	28.4	23.8	8.5	17.3	18.6	15.9	18.0	9.0	8.3	4.9	24.4	20.4
SON	18.5	18.5	7.5	10.4	9.4	9.5	8.0	8.9	8.0	11.1	17.3	17.6
Yearly	70.3	49.1	32.1	38.9	40.6	34.9	39.3	31.5	26.6	39.6	62.1	55.3

• Not as consistent seasonal and overall performances when comparing

Average valid extractions per month (SVC_VIS_PP)

Conclusions

1) OLCI-A and OLCI-B valid extractions according to the standard OC-SVC protocol (SVC_VIS_PP)

- i. <u>OLCI-A</u> and <u>OLCI-B</u>: **MOBY**, **El Hierro**, **Madeira-OPT** and **MSEA-S/N (Crete)** yield the highest number of valid extractions
- ii. El Hierro (57/52.5) and MOBY (55.1/58.8), then secondly Madeira-OPT (51.8/51.2), and thirdly the Create sites, particularly MSEA-N (44.3/51.4) and MSEA-S (47.5/49.8)
- iii. The seasonal distribution of valid extractions is the most balanced in the above order

2) MODISA and VSNPP valid extractions according to the standard OC-SVC protocol (SVC_VIS_PP)

- i. <u>MODISA</u> and <u>VSNPP</u>: Crete sites **MSEA-S/N** and **Antikythera** yield the highest number of valid extractions, specifically MSEA-N (70/62.1), Antikythera (64.2/70.3), and MSEA-S (62.2/55.3)
- ii. <u>MODISA</u> and <u>VSNPP</u> provide markedly worse performance for El Hierro, MOBY and Madeira when compared with <u>OLCI-A</u> and <u>OLCI-B</u>
- iii. The seasonal distribution of valid extractions at the Crete sites is relatively balanced but with some decrement in winter months

Extra slides

Investigation of differences in valid extractions between OLCI and VIIRS/MODIS

Average valid extractions per month (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

1) Flags...

In particular clouds....

22 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

Scattered clouds, spatial resolution and window sizes

Scattered clouds, spatial resolution and window sizes

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3x3 and 5x5 windows:

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3x3 and 5x5 windows:

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3x3 and 5x5 windows:

VIIRS: BOW-TIE deletion

28 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

EUMETSAT

Many 5x5 extractions for VIIRS are being affected by these BOWTIEDEL pixels: Examples below: 25 different extractions from 25 different days. Site: El Hierro. Sensor VIIRS (Suomi-NPP)

Since these pixels are masked, these extractions are being **rejected** because of the requirement of having 100% valid pixels

Many 5x5 extractions for VIIRS are being affected by these BOWTIEDEL pixels: Examples below: 25 different extractions from 25 different days. Site: El Hierro. Sensor VIIRS (Suomi-NPP)

Since these pixels are masked, these extractions are being **rejected** because of the requirement of having 100% valid pixels

Sensitivity of the results to variations in the screening criteria

Sensitivity of the results to variations in the screening

Variations of the screening criteria

2) Protocol **"SVC_VIS_PP_50" Description:** Same as **SVC_VIS_PP**, but

• Number of valid pixels ≥ 13 (instead of 25)

3) Protocol **"SVC_VIS_PP_T865-0.1" Description:** Same as **SVC_VIS_PP**, but

• **AOT(NIR)** < 0.1 (instead of 0.15)

4) Protocol **"SVC_VIS_PP_A865-1" Description:** Same as SVC_VIS_PP, but

• **ANG(NIR)** < 1 (additional condition)

5) Protocol **"SVC_VIS_PP_CHL-0.1"** Description: Same as SVC_VIS_PP, but

• **CHL** < 0.1 (instead of 0.2)

6) Protocol **"SVC_VIS_PP_CHL-0.3"** Description: Same as SVC_VIS_PP, but

• CHL < 0.3 (instead of 0.2)

7) Protocol **"SVC_VIS_PP_flagSet1"**

Description: Same as SVC_VIS_PP, but

• <u>Not</u> considering flags for: **moderate glint** and **absorbing aerosols**

SZA = Solar Zenith Angle
OZA = Observation Zenith Angle
CV = Coefficient of Variation = Standard deviation/Mean x 100%
ρ_w(x nm) = Water reflectance at x nm
AOT(x nm) = Aerosol optical thickness at x nm
ANG(x nm) = Aerosol Ångström exponent at x nm
CHL_x = Chlorophyll concentration, algorithm X

Sensitivity of the results to variations in the screening RANKINGS – OLCI-A & OLCI-B

Sensitivity of the results to variations in the screening RANKINGS – OLCI-A & OLCI-B

Chlorophyll-a distributions OLCI-A (Screened SVC_VIS_PP)

Further conclusions

1) According to standard SVC protocol (SVC_VIS_PP)

- i. <u>OLCI-A</u> and <u>OLCI-B</u>: **MOBY**, **El Hierro**, **MSEA-S/N (Crete)**, **Madeira-OPT** yield the highest number of valid and annually balanced extractions
- ii. <u>MODISA</u> and <u>VSNPP</u>: Crete sites (**MSEA-S/N and Antikythera**) yield the highest number of valid extractions, with relatively balanced annual distributions
- iii. MODISA and VSNPP provide markedly worse performance for El Hierro, MOBY and Madeira than OLCI-A and OLCI-B.
- 2) Differences in **flagging** explain the main differences in the rankings found for <u>MODISA</u>, <u>VSNPP</u> and <u>OLCI</u>.
 - i. Cloud-flagged pixels are observed 10%-to-20% more frequently in SeaDAS-processed MODISA and VSNPP wrt. standard OLCI products.
 - ii. Overall differences: related to different prevalence of scattered clouds among the sites, combined with lower spatial resolution of MODIS and VIIRS and the BOW TIE effect in VIIRS.
- 3) Slight variations in the screening criteria compared to the standard SC-SVC extraction protocol show:
 - i. <u>OLCI</u>: **Mostly consistent rankings** when compared to SVC_VIS_PP (except for e.g. SVC_VIS_PP_CHL-0.1, which yields markedly worsened performance for El Hierro).
 - ii. <u>MODISA</u> & <u>VSNPP</u>: **Not so consistent** results among the protocols, and among the sensors (e.g. BOUSSOLE's performance is highly variable among the different protocols and between <u>MODISA</u> and <u>VSNPP</u>).
- 4) Overall distributions of water reflectance at 443 nm **do not** resemble Gaussian monomodal behaviour, although typically do not exhibit evident bi-modality (Sarle coefficient < 0.55, except for MSEA-N and MSEA-S for <u>MODISA</u>).
- 5) Overall distributions of chlorophyll mostly resemble monomodal or bimodal behaviour, with better-defined modes
 - i. Bi-modality is mostly observed over Greek and Italian sites with highest (lowest) chlorophyll values in Winter (Summer).

Detailed results for the standard protocol SVC_VIS_PP and for variations in the screening criteria

OLCI-A

SVC VIS PP

Protocol "SVC VIS PP 50" **Description:** Same as SVC VIS PP, but

Number of valid pixels \geq 13 (50%+1)

EUMETSAT

200

OLCI-A

SVC VIS PP

Protocol "SVC VIS PP T865-0.1" **Description:** Same as SVC VIS PP, but

AOT(NIR) < 0.1 (instead of 0.15)

OLCI-A

SVC_VIS_PP

Protocol **"SVC_VIS_PP_A865-1"** Description: Same as SVC_VIS_PP, but

• **ANG(NIR)** < 1 (additional condition)

EUMETSAT

OLCI-A

SVC VIS PP

Protocol "SVC VIS PP CHL-0.1" **Description:** Same as SVC VIS PP, but

CHL < 0.1 (instead of 0.2)

OLCI-A

SVC VIS PP

Protocol "SVC VIS PP CHL-0.3" **Description:** Same as SVC VIS PP, but

CHL < 0.3 (instead of 0.2)

OLCI-A

SVC_VIS_PP

Protocol **"SVC_VIS_PP_flagSet1" Description:** Same as SVC_VIS_PP, but

• Not considering flags for: moderate glint and absorbing aerosols

EUMETSAT

Global results in seasons (OLCI-A, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Saacane/Sitae				Ν	/lean r	numbe	r of va	lid extraction	S			
Seasons/Sites	Antikythera	ntikythera BOUSSOLE El-Hierro LMP1 LMP2 LMP3 LMP4 Madeira-OPT Madei								MOBY	MSEA-N	MSEA-S
DJF	5.2	1.9	11.8	1.5	1.3	1.9	2.3	8.7	4.1	12.6	5.6	6.4
MAM	8.7	2.1	14.7	6.9	7.3	7.1	7.5	12	7.9	13.9	8.9	9.7
JJA	18.6	13.1	15.3	11.8	10.8	11.4	12.9	17.6	10.6	14.3	19.1	18.7
SON	9.9	9.9	15.3	7.3	9.6	9.4	9.1	13.5	10.2	14.3	10.6	12.8
Yearly	42.3	27	57	27.6	29.1	29.9	31.8	51.8	32.9	55.1	44.3	47.5

Variation in the protocol: SVC_VIS_PP_50

Concerne /Sites				Ν	/lean r	numbe	r of va	alid extraction	S			
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	8.1	2.5	13.3	2.1	2.1	2.7	3.1	10.8	7.0	16.0	7.9	8.1
MAM	9.5	2.1	15.8	8.1	8.3	7.9	7.9	13.1	9.1	14.5	10.6	9.9
JJA	18.9	14.1	15.6	12.7	12.1	12.3	13.1	18.7	11.2	15.7	19.5	19.5
SON	11.4	12.7	16.2	9.8	11.0	11.2	10.0	15.8	12.4	17.2	12.4	13.9
Yearly	48.0	31.5	61.0	32.8	33.6	34.1	34.1	58.6	39.6	63.4	50.4	51.4

Global results in seasons (OLCI-B, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Concorra /Citor				Ν	/lean r	numbe	r of va	alid extraction	S			
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.8	1.6	10.2	2.9	1.9	2.9	1.6	8.1	5.5	16.6	6.1	7.4
MAM	10.0	1.3	14.7	8.0	8.9	8.6	8.6	12.3	7.1	15.0	12.0	11.0
JJA	21.3	13.9	13.8	12.5	8.3	12.8	10.5	17.8	13.6	13.4	21.0	18.4
SON	11.6	8.7	13.8	7.0	8.6	8.3	6.7	13.0	9.1	13.8	12.3	12.9
Yearly	47.8	25.6	52.5	30.4	27.8	32.6	27.5	51.2	35.3	58.8	51.4	49.8

Variation in the protocol: SVC_VIS_PP_50

Concerne /Sites				Ν	/lean r	numbe	r of va	lid extraction	S			
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	7.1	1.6	13.8	4.2	2.2	3.2	2.9	12.0	7.8	19.2	7.4	10.3
MAM	10.0	1.6	15.7	8.0	8.9	9.9	8.6	14.2	8.1	15.4	13.3	11.6
JJA	21.3	14.9	14.4	12.8	9.3	12.8	10.9	18.1	14.9	16.0	22.6	18.7
SON	12.9	9.7	15.7	8.6	8.9	11.8	8.0	15.9	12.0	17.3	12.9	13.9
Yearly	51.3	27.8	59.5	33.6	29.4	37.7	30.4	60.2	42.7	67.8	56.2	54.6

Global results in seasons (MODISA, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Concerne /Sites				Ν	/lean r	numbe	r of va	alid extraction	S			
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.0	4.4	6.2	1.8	1.0	1.0	1.6	5.8	4.6	12.6	7.0	5.8
MAM	14.6	3.0	6.8	7.4	10.2	4.6	9.8	4.4	7.0	5.6	15.0	13.8
JJA	29.4	11.4	5.4	11.2	15.4	8.6	17.8	9.0	9.4	4.0	31.6	25.0
SON	16.2	6.8	7.8	7.4	9.2	9.0	9.4	8.4	8.4	8.0	16.4	17.6
Yearly	64.2	25.6	26.2	27.8	35.8	23.2	38.6	27.6	29.4	30.2	70.0	62.2

Variation in the protocol: SVC_VIS_PP_50

Concerne /Sites				Ν	/lean r	numbe	r of va	lid extraction	S			
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	5.4	5.4	10.4	2.6	1.2	1.4	2.4	8.6	8.4	20.0	9.0	9.0
MAM	16.0	3.2	11.0	12.8	12.0	9.4	11.4	7.8	10.4	10.0	18.0	14.8
JJA	33.0	14.2	8.0	18.0	18.8	17.2	19.8	13.6	13.2	7.6	32.8	26.0
SON	19.6	8.0	12.8	12.4	12.6	14.8	12.4	12.4	12.6	12.6	18.6	20.8
Yearly	74.0	30.8	42.2	45.8	44.6	42.8	46.0	42.4	44.6	50.2	78.5	70.6

Global results in seasons (VSNPP, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Second /Sites				Ν	/lean r	numbe	r of va	lid extraction	S			
Seasons/Sites	Antikythera	ntikythera BOUSSOLE EI-Hierro LMP1 LMP2 LMP3 LMP4 Madeira-OPT Madeira-SOW MOBY MSEA-									MSEA-N	MSEA-S
DJF	10.9	4.4	9.9	2.1	2.1	2.3	4.5	8.0	4.4	15.9	10.0	7.0
MAM	12.5	2.5	6.3	9.1	10.5	7.3	8.8	5.6	6.0	7.8	10.5	10.3
JJA	28.4	23.8	8.5	17.3	18.6	15.9	18.0	9.0	8.3	4.9	24.4	20.4
SON	18.5	18.5	7.5	10.4	9.4	9.5	8.0	8.9	8.0	11.1	17.3	17.6
Yearly	70.3	49.1	32.1	38.9	40.6	34.9	39.3	31.5	26.6	39.6	62.1	55.3

Variation in the protocol : SVC_VIS_PP_50

Concerne /Sites		Mean number of valid extractions												
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S		
DJF	14.9	6.0	14.4	2.4	2.5	2.4	5.8	13.0	8.6	24.4	13.8	10.4		
MAM	16.9	3.3	9.5	12.8	13.0	11.3	11.5	10.1	8.4	12.1	15.5	13.3		
JJA	36.3	30.1	13.4	23.9	24.6	23.8	23.4	13.9	12.4	9.3	31.1	26.3		
SON	23.1	23.5	13.1	13.5	13.4	12.9	11.4	13.0	13.1	15.5	22.4	23.3		
Yearly	91.2	62.9	50.4	52.5	53.5	50.3	52.0	50.0	42.5	61.3	82.8	73.1		

S3A_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP

50 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

EUMETSAT

S3B_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP_ANG-1

OLCI-B

67 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

Results shown as "fraction" of overpasses that matched certain criterion per month

Valid Extraction (all criteria cumulatively)

Valid Pixels=100%

AOT[NIR]<0.15

CHL<0.2

CV<15%

not CLOUD

not GLINT

not HI-SZA

Screening criteria grouped for each site

SVC_VIS_PP: Distributions of ρ_w and CHL

Sarle's coefficient (S)

S ∈ [0 - 1]

- If S > 0.55 → Distribution exhibits statisticallysignificant bimodal or heavily-skewed monomodal behaviour.
- If $S \le 0.55 \rightarrow$ Distribution is mainly monomodal.

Finite sample expression

$$S = \frac{g^2 + 1}{k + \frac{3(n-1)^2}{(n-2)(n-3)}}$$

g → Sample skewness k → Sample excess kurtosis n → Sample size

Antikythera, S3A/OLCI (Protocol: SVC_VIS_PP)

Antikythera, S3B/OLCI (Protocol: SVC VIS PP)

Antikythera, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

BOUSSOLE, S3A/OLCI (Protocol: SVC VIS PP) 20 Unscreened ---- S=0.66, N=70 ---- S=0.26, N=71 10 ---- S=0.20, N=71 ---- S=0.38, N=71 10 Screened (SVC_VIS_PP) S=0.34, N=10 S=0.37, N=10 S=0.35, N=10 S=0.46, N=10 -5 DF 10 5 5 0 ---- S=0.64, N=117 ---- S=0.34, N=117 --- S=0.41, N=117 ---- S=0.50, N=117 - S=0.59, N=11 --- S=0.66, N=11 --- S=0.38, N=11 10 10 MAM 10 Seasons 10 0 C ---- S=0.29, N=140 --- S=0.23, N=140 ---- S=0.35, N=140 ---- S=0.64, N=138 --- S=0.41, N=68 --- S=0.33, N=68 ---- S=0.39, N=68 20 ₫ ¹⁰ 10 20 0 ---- S=0.16, N=131 ---- S=0.14, N=131 ---- S=0.20, N=131 ---- S=0.64, N=130 20 S=0.52, N=51 S=0.46, N=51 --- S=0.44, N=51 --- S=0.43, N=51 10 NOS 10 20 10 0 40 ---- S=0.21, N=459 --- S=0.11, N=459 ---- S=0.13, N=459 --- S=0.70, N=455 50 Combined - S=0.47, N=140 50 ← S=0.42, N=140 - S=0.37, N=140 50 20 25 0 0.001 0.02 0.03 0.000 0.005 0.010 0.002 0.00 0.50 0.75 0.00 0.01 0.04 -0.005 -0.002 - 0.001 0.0000.25 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

BOUSSOLE, Aqua/MODIS (Protocol: SVC VIS PP) Unscreened _ 20 ----- S=0.35, N=138 ---- S=0.37, N=138 ---- S=0.33, N=138 --- S=0.26, N=138 20 Screened (SVC_VIS_PP) - S=0.43, N=22 20 --- S=0.28, N=22 - S=0.37, N=22 S=0.41, N=22 10 告 10 10 10 0 20 10 ---- S=0.39, N=144 ---- S=0.35, N=144 20 ---- S=0.36, N=144 --- S=0.85, N=144 ---- S=0.49, N=15 - S=0.40, N=15 ---- S=0.25, N=15 MAM 10 S 10 5 10 Season 0 40 ---- S=0.26, N=181 --- S=0.28, N=181 ---- S=0.39, N=181 --- S=0.58, N=181 40 ---- S=0.37, N=57 - S=0.35, N=57 --- S=0.47, N=57 20 20 All 20 20 0 ſ --- S=0.28, N=167 --- S=0.37, N=167 --- S=0.48, N=167 ---- S=0.50, N=167 20 - S=0.33, N=34 5=0.37, N=34 - S=0.56, N=34 S=0.50, N=34 20 SON 20 20 10 0 0 100 --- S=0.33, N=630 --- S=0.31, N=630 ---- 5=0.27, N=630 --- S=0.82, N=630 100 Combined 50 --- S=0.42, N=128 50 50 50 0 0.005 0.000 0.010 $-0.002_{-0.001}_{-0.000}_{-0.001}_{-0.001}_{-0.002}_{-0.002}$ 0.50 0.75 0.01 0.02 0.03 0.04 -0.005 0.00 0.25 0.00 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(555)$ pw(645)

BOUSSOLE, Suomi-NPP/VIIRS (Protocol: SVC VIS PP)

El-Hierro, S3B/OLCI (Protocol: SVC VIS PP) Unscreened ---- S=0.44, N=84 ---- S=0.52, N=84 10 ---- S=0.45, N=84 --- 5=0.90, N=83 20 10 Screened (SVC_VIS_PP) - S=0.41, N=32 S=0.36, N=32 - S=0.44, N=32 S=0.48, N=32 5 5 10 5 0 10 ---- S=0.24, N=71 --- S=0.20, N=71 --- S=0.21, N=71 ---- S=0.47, N=71 10 - S=0.48, N=46 ---- S=0.47, N=46 20 - S=0.37, N=46 ---- S=0.39, N=46 MAM 10 Seasons 5 5 10 0 C 10 ---- S=0.58, N=66 ---- S=0.27, N=66 ---- S=0.58, N=64 --- S=0.27, N=66 10 --- S=0.44, N=43 - S=0.41, N=43 --- S=0.44, N=43 ---- S=0.59, N=43 20 5 All 5 5 0 10 ---- S=0.19, N=75 ---- S=0.15, N=75 --- S=0.25, N=75 -----S=0.35, N=74 20 10 - S=0.30, N=43 S=0.27, N=43 S=0.35, N=43 S=0.34, N=43 SON 10 5 10 5 0 ---- S=0.22, N=296 --- S=0.14, N=296 ---- S=0.13, N=296 ---- S=0.80, N=292 40 Combined 40 S=0.36, N=164 - S=0.41, N=164 20 50 20 20 0 0.005 0.001 0.02 0.03 0.000 0.010 0.002 0.00 0.50 0.75 0.00 0.01 0.04 -0.005 -0.002 - 0.001 0.0000.25 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

El-Hierro, Aqua/MODIS (Protocol: SVC VIS PP) Unscreened ____ S=0.37, N=91 ---- S=0.43, N=91 --- S=0.85, N=91 ---- S=0.50, N=91 20 20 Screened (SVC_VIS_PP) S=0.39, N=31 S=0.52, N=31 S=0.30, N=31 S=0.43, N=31 -10 20 DF 10 10 0 10 ---- S=0.34, N=82 ---- S=0.35, N=82 --- S=0.38, N=82 ---- S=0.45, N=82 20 5=0.38, N=34 ---- S=0.28, N=34 ---- S=0.43, N=34 10 MAM Seasons 10 5 10 0 0 ---- S=0.30, N=59 --- S=0.23, N=59 S=0.38, N=59 ---- S=0.52, N=59 20 10 --- S=0.28, N=27 --- S=0.26, N=27 10 **₹** 5 5 10 0 ---- S=0.47, N=101 --- S=0.40, N=101 --- S=0.52, N=101 ---- S=0.50, N=101 - S=0.33, N=39 20 - S=0.45, N=39 - S=0.37, N=39 S=0.42, N=39 NOS 10 10 20 10 0 100 --- S=0.32, N=333 --- 5=0.28, N=333 / ---- S=0.43, N=333 ---- S=0.66, N=333 Combined 50 - S=0.26, N=131 - S=0.34, N=131 20 50 50 25 0 0.02 0.03 0.005 0.010 $_{-0.002}^{-0.001}_{-0.001}_{-0.000}_{-0.001}_{-0.002}_{-0.002}_{-0.002}$ 0.00 0.50 0.00 0.01 -0.005 0.25 0.04 0.000 1.00 0.75 $\rho_w(443)$ CHL[mg/m³] $\rho_w(555)$ pw(645)

El-Hierro, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Madeira-OPT, S3A/OLCI (Protocol: SVC VIS PP) Unscreened --- S=0.30, N=119 ---- S=0.11, N=119 ---- S=0.69, N=113 ---- S=0.09, N=119 Screened (SVC_VIS_PP) S=0.47, N=45 S=0.35, N=45 S=0.40, N=45 S=0.42, N=45 20 10 10 10 10 0 10 ---- S=0.31, N=110 ---- S=0.18, N=110 ---- S=0.19, N=110 --- S=0.74, N=109 - S=0.34, N=62 - S=0.57, N=62 ---- S=0.52, N=62 ---- S=0.50, N=62 10 20 MAM Seasons 10 5 C 20 --- S=0.22, N=125 S=0.22, N=125 ---- S=0.39, N=124 ---- S=0.21, N=125 10 - S=0.40, N=91 - S=0.40, N=91 10 All 20 10 5 0 ---- S=0.39, N=118 ---- S=0.29, N=119 --- S=0.27, N=119 --- S=0.39, N=119 - S=0.46, N=70 - S=0.48, N=70 - S=0.42, N=70 S=0.47, N=70 10 NOS 10 20 0 --- S=0.28, N=473 --- 5=0.09, N=473 ---- S=0.04, N=473 100 ----- S=0.57, N=464 Combined 50 S=0.39, N=268 S=0.43, N=268 40 - S=0.47, N=268 20 50 25 20 0 0.005 0.02 0.03 -0.005 0.000 0.010 0.001 0.002 0.00 0.50 0.75 0.00 0.01 -0.002 - 0.001 0.0000.25 1.00 0.04 $\rho_w(443)$ $CHL[mg/m^3]$ $\rho_w(560)$ pw(620)

Madeira-OPT, S3B/OLCI (Protocol: SVC VIS PP) Unscreened ---- S=0.30, N=68 10 10 ---- S=0.35, N=68 ---- S=0.35, N=68 --- S=0.54, N=67 20 Screened (SVC_VIS_PP) S=0.57, N=25 S=0.41, N=25 5 S=0.48, N=25 S=0.42, N=25 -DF 5 5 10 0 10 20 ---- S=0.29, N=60 --- S=0.26, N=60 10 --- S=0.14, N=60 ---- S=0.51, N=60 - S=0.48, N=38 - S=0.48, N=38 ---- S=0.44, N=38 S=0.43, N=38 5 MAM Seasons 5 10 5 C ---- S=0.28, N=68 --- S=0.24, N=68 ---- S=0.28, N=68 ---- S=0.33, N=68 10 --- S=0.43, N=55 ---- S=0.47, N=55 --- S=0.38, N=55 S=0.45, N=55 ۲⁵ 20 5 5 0 C --- S=0.27, N=75 --- S=0.41, N=75 ---- S=0.51, N=75 S=0.43, N=74 20 S=0.42, N=40 - S=0.35, N=40 S=0.34, N=40 S=0.51, N=40 10 NOS 5 10 0 40 --- 5=0.29, N=271 --- S=0.30, N=271 ---- 5=0.33, N=271 ---- S=0.45, N=269 20 Combined S=0.38, N=158 ← S=0.42, N=158 ← S=0.47, N=158 20 50 20 10 0 0.005 0.00 0.03 0.000 0.010 0.001 0.002 0.50 0.75 0.00 0.01 0.02 -0.005 -0.002 - 0.001 0.0000.25 0.04 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

Madeira-OPT, Aqua/MODIS (Protocol: SVC_VIS_PP)

Madeira-OPT, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Madeira-SOW, S3A/OLCI (Protocol: SVC VIS PP)

Madeira-SOW, S3B/OLCI (Protocol: SVC VIS PP)

Madeira-SOW, Aqua/MODIS (Protocol: SVC_VIS_PP)

Madeira-SOW, Suomi-NPP/VIIRS (Protocol: SVC VIS PP)

MOBY, S3A/OLCI (Protocol: SVC VIS PP)

MOBY, S3B/OLCI (Protocol: SVC VIS PP)

MOBY, Aqua/MODIS (Protocol: SVC VIS PP) Unscreened ---- S=0.34, N=132 ---- S=0.47, N=132 ---- S=0.36, N=132 ---- S=0.43, N=132 20 Screened (SVC_VIS_PP) 20 S=0.35, N=63 S=0.45, N=63 S=0.41, N=63 S=0.33, N=63 -50 ≝ 10 20 10 0 20 ---- S=0.22, N=75 ---- S=0.26, N=75 --- S=0.35, N=75 ---- S=0.39, N=75 50 - S=0.54, N=28 - S=0.77, N=28 - S=0.47, N=28 ---- S=0.30, N=28 j 10 10 MAM Seasons 10 25 0 0 --- S=0.35, N=67 20 S=0.41, N=67 ---- S=0.49, N=67 --- S=0.26, N=67 20 40 - S=0.38, N=20 --- S=0.57, N=20 10 All 10 10 20 0 0 ſ --- S=0.32, N=93 --- S=0.35, N=93 ---- S=0.42, N=93 50 ---- S=0.42, N=93 10 S=0.38, N=40 20 - S=0.42, N=40 - S=0.39, N=40 --- S=0.44, N=40 SON 10 25 5 10 0 0 0 200 100 --- S=0.35, N=367 --- S=0.32, N=367 ---- 5=0.41, N=367 ---- S=0.47, N=367 40 Combined 50 S=0.42, N=151 - S=0.35, N=151 100 50 20 25 0 C 0.03 0.02 0.000 0.005 0.010 $-0.002_{-0.001_{-0.000_{-0.000_{-0.001_{-0.000_{-0.001_{-0.000}{-0.000_{-0.000_{-0.000_{-0.000_{-0.000}{-0.000_{-0.000_{-0.000}{-0.000_{-0.000}{-0.0$ 0.00 0.50 0.01 0.04 -0.005 0.25 0.00 0.002 1.00 0.75 $\rho_w(443)$ CHL[mg/m³] $\rho_{w}(555)$ pw(645)

MSEA-N, S3A/OLCI (Protocol: SVC VIS PP) Unscreened ---- S=0.24, N=86 ---- S=0.23, N=86 ---- 5=0.30, N=86 --- S=0.43, N=83 10 Screened (SVC_VIS_PP) S=0.33, N=29 S=0.40, N=29 S=0.29, N=29 S=0.33, N=29 10 10 20 10 5 0 20 --- S=0.37, N=107 --- S=0.31, N=107 ---- S=0.26, N=107 --- S=0.63, N=103 20 10 S=0.43, N=46 - S=0.32, N=46 ---- S=0.47, N=46 - S=0.51, N=46 MAM 10 Seasons 10 10 5 ---- S=0.56, N=155 --- S=0.49, N=156 ---- S=0.49, N=156 1n --- S=0.44, N=156 11 20 --- S=0.37, N=99 5=0.34, N=99 -20 10 ₹ 10 50 0 0 ---- S=0.37, N=127 ---- S=0.51, N=126 ---- S=0.44, N=127 20 ---- S=0.45, N=127 - S=0.43, N=55 S=0.42, N=55 S=0.20, N=55 S=0.58, N=55 10 NOS 10 20 10 C --- S=0.37, N=476 --- S=0.34, N=476 ---- S=0.37, N=476 ---- S=0.44, N=467 1 Combined 40 S=0.50, N=229 50 - S=0.34, N=229 - S=0.68, N=229 100 20 20 0 0.005 0.001 0.02 0.03 -0.005 0.000 0.010 0.002 0.00 0.50 0.75 0.00 0.01 0.04 -0.002 - 0.001 0.0000.25 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

MSEA-N, S3B/OLCI (Protocol: SVC VIS PP) Unscreened _____ S=0.24, N=43 ---- S=0.29, N=43 ---- S=0.44, N=43 --- 5=0.39, N=43 Screened (SVC_VIS_PP) S=0.63, N=19 S=0.38, N=19 S=0.56, N=19 S=0.52, N=19 -5 10 5 5 0 10 ---- S=0.22, N=69 --- S=0.16, N=69 --- S=0.55, N=69 --- S=0.27, N=69 10 - S=0.39, N=37 ← S=0.45, N=37 --- S=0.32, N=37 --- S=0.49, N=37 MAM 2 Seasons 10 5 5 0 ---- S=0.23, N=90 --- S=0.25, N=90 ---- S=0.50, N=90 --- S=0.19, N=90 50 20 10 - S=0.36, N=65 - S=0.29, N=65 --- S=0.37, N=65 S=0.31, N=65 -₫ 10 25 10 5 0 0 0 ---- S=0.26, N=75 --- S=0.19, N=75 10 ---- S=0.19, N=75 S=0.50, N=75 20 S=0.37, N=38 S=0.65, N=38 - S=0.62, N=38 S=0.48, N=38 5 10 SON 5 10 .14/2 0 C 20 ---- S=0.39, N=277 --- S=0.23, N=277 / ---- 5=0.18, N=277 ---- S=0.48, N=277 Combined 40 - S=0.37, N=159 - S=0.43, N=159 S=0.32, N=159 - S=0.69, N=159 50 20 10 20 0 0.005 0.001 0.02 0.03 0.000 0.010 0.002 0.50 0.00 0.01 0.04 _0.005 _0.002_0.001 0.000 0.25 0.75 1.00 0.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

MSEA-N, Suomi-NPP/VIIRS (Protocol: SVC VIS PP)

MSEA-S, S3A/OLCI (Protocol: SVC VIS PP) Unscreened --- S=0.22, N=83 ---- S=0.19, N=83 10 ---- S=0.21, N=83 ---- S=0.39, N=83 10 Screened (SVC_VIS_PP) S=0.64, N=33 S=0.65, N=33 S=0.54, N=33 S=0.51, N=33 -20 10 DF 5 5 0 20 ---- S=0.44, N=100 ---- S=0.41, N=100 --- S=0.40, N=98 ---- S=0.35, N=100 - S=0.36, N=50 ---- S=0.30, N=50 20 - S=0.48, N=50 --- S=0.49, N=50 MAM 2 10 Seasons 10 10 0 20 100 20 --- S=0.49, N=147 --- S=0.51, N=147 --- S=0.42, N=147 ---- S=0.53, N=145 - S=0.28, N=97 - S=0.32, N=97 --- S=0.34, N=97 S=0.40, N=97 -₹ 10 20 10 50 0 0 C ---- S=0.42, N=133 --- S=0.38, N=133 20 ---- S=0.35, N=133 ---- S=0.51, N=132 50 S=0.34, N=66 - S=0.44, N=66 - S=0.45, N=66 S=0.44, N=66 10 20 SON 10 25 0 100 ---- S=0.35, N=463 ---- 5=0.43, N=463 ---- S=0.37, N=463 ---- S=0.55, N=458 50 Combined 05 - S=0.52, N=246 - S=0.34, N=246 - S=0.32, N=246 100 - S=0.67, N=246 50 25 0 0.001 0.03 _0.005 0.000 0.005 0.010 0.002 0.00 0.50 0.00 0.01 0.02 0.04 _0.002_0.001 0.000 0.25 0.75 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(560)$ pw(620)

MSEA-S, S3B/OLCI (Protocol: SVC_VIS_PP)

MSEA-S, Aqua/MODIS (Protocol: SVC VIS PP) Unscreened ---- S=0.24, N=70 ---- S=0.35, N=70 ---- 5=0.48, N=70 --- S=0.18, N=70 10 Screened (SVC_VIS_PP) S=0.32, N=29 - S=0.36, N=29 S=0.23, N=29 5=0.47, N=29 -10 10 20 DJF 5 20 10 ---- S=0.50, N=89 --- S=0.21, N=89 --- S=0.56, N=89 ---- S=0.57, N=89 - S=0.50, N=69 S=0.14, N=69 ---- S=0.58, N=69 ---- S=0.56, N=69 20 MAM 10 Seasons 5 10 0 C C 40 ---- S=0.57, N=143 ---- S=0.14, N=143 ---- S=0.35, N=143 ---- S=0.64, N=143 100 20 - S=0.48, N=125 - S=0.29, N=125 --- S=0.28, N=125 ¥ 20 20 50 10 0 0 0 14 ---- S=0.40, N=127 ---- S=0.47, N=127 / ---- S=0.50, N=127 ---- S=0.57, N=127 50 20 - S=0.43, N=88 - S=0.29, N=88 - S=0.41, N=88 S=0.61, N=88 NOS 10 20 25 10 0 0 100 200 ---- S=0.55, N=429 --- 5=0.17, N=429 ---- 5=0.46, N=429 ---- S=0.68, N=429 40 Combined S=0.61, N=311 S=0.16, N=311 - S=0.37, N=311 50 50 20 100 0 C 0.03 0.02 0.000 0.005 0.010 0.001 0.50 0.00 0.01 0.04 -0.005 _0.002_0.001 0.000 0.00 0.75 0.002 0.25 1.00 $\rho_w(443)$ CHL[mg/m³] $\rho_w(555)$ pw(645)

MSEA-S, Suomi-NPP/VIIRS (Protocol: SVC VIS PP)

Spectra (unscreened and screened according to SVC_VIS_PP)

Antikythera, S3A/OLCI (Protocol: SVC_VIS_PP)

Antikythera, S3B/OLCI (Protocol: SVC_VIS_PP)

Antikythera, Aqua/MODIS (Protocol: SVC_VIS_PP)

Antikythera, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

BOUSSOLE, S3A/OLCI (Protocol: SVC_VIS_PP)

BOUSSOLE, S3B/OLCI (Protocol: SVC_VIS_PP)

BOUSSOLE, Aqua/MODIS (Protocol: SVC_VIS_PP)

BOUSSOLE, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

El-Hierro, S3A/OLCI (Protocol: SVC_VIS_PP)

El-Hierro, S3B/OLCI (Protocol: SVC_VIS_PP)

El-Hierro, Aqua/MODIS (Protocol: SVC_VIS_PP)

El-Hierro, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP1, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP2, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP3, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, S3A/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, S3B/OLCI (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, Aqua/MODIS (Protocol: SVC_VIS_PP)

Lampedusa-LMP4, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Madeira-OPT, S3A/OLCI (Protocol: SVC_VIS_PP)

Madeira-OPT, S3B/OLCI (Protocol: SVC_VIS_PP)

Madeira-OPT, Aqua/MODIS (Protocol: SVC_VIS_PP)

Madeira-OPT, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Madeira-SOW, S3A/OLCI (Protocol: SVC_VIS_PP)

Madeira-SOW, S3B/OLCI (Protocol: SVC_VIS_PP)

Madeira-SOW, Aqua/MODIS (Protocol: SVC_VIS_PP)

Madeira-SOW, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

MOBY, S3A/OLCI (Protocol: SVC_VIS_PP)

MOBY, S3B/OLCI (Protocol: SVC_VIS_PP)

MOBY, Aqua/MODIS (Protocol: SVC_VIS_PP)

198 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

MOBY, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

199 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

MSEA-N, S3A/OLCI (Protocol: SVC_VIS_PP)

MSEA-N, S3B/OLCI (Protocol: SVC_VIS_PP)

MSEA-N, Aqua/MODIS (Protocol: SVC_VIS_PP)

MSEA-N, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

MSEA-S, S3A/OLCI (Protocol: SVC_VIS_PP)

MSEA-S, S3B/OLCI (Protocol: SVC_VIS_PP)

MSEA-S, Aqua/MODIS (Protocol: SVC_VIS_PP)

MSEA-S, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Histograms/spectra screened SVC_VIS_PP

Aqua_MODIS_SVC_VIS_PP

209 EUM/STG-SWG/0/22/VWG,

210 EUM/STG-SWG/0/22/VWG,

211 EUM/STG-SWG/0/22/VWG, v

212 EUM/STG-SWG/0/22/VWG,

EUMETSAT

213 EUM/STG-SWG/0/22/VWG, v3

214 EUM/STG-SWG/0/22/VWG, v:

S3B_OLCI_SVC_VIS_PP

EUMETSAT

215 EUM/STG-SWG/0/22/VWG, v

216 EUM/STG-SWG/0/22/VWG, v

Aqua_MODIS_SVC_VIS_PP

EUMETSAT

217 EUM/STG-SWG/0/22/VWG, v

218 EUM/STG-SWG/0/22/VWG, v

EUMETSAT

219 EUM/STG-SWG/0/22/VWG, v

220 EUM/STG-SWG/0/22/VWG,

Aqua_MODIS_SVC_VIS_PP

EUMETSAT

221 EUM/STG-SWG/0/22/VWG, v:

EUMETSAT

222 EUM/STG-SWG/0/22/VWG, v:

223 EUM/STG-SWG/0/22/VWG, v:

Suomi-NPP_VIIRS_SVC_VIS_PP

EUMETSAT

224 EUM/STG-SWG/0/22/VWG, \

Aqua_MODIS_L2_SeaDAS_NA_NA_NA_5_SVC_VIS_PP

225 EUM/STG

S3A_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP

EUMETSAT

226 EUM/STG

S3B_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP

EUMETSAT

227 EUM/STG

Suomi-NPP_VIIRS_L2_SeaDAS_NA_NA_NA_5_SVC_VIS_PP

228 EUM/STG

Impact of different screening criteria in SVC_VIS_PP

EUMETSAT

230 EUM/STG-SW(

CLDI(Cloudy

or MODGLINT HIGLINT CLDI(With glint Cloudy

pixels are valid

5x5

and all

OZA, Flags

SZA,

checks:

pixels are valid

5x5

and all

OZA, Flags

SZA,

checks:

pixels are valid

5x5

and all

OZA, Flags

SZA,

checks:

pixels are valid

5x5

and all

OZA, Flags

SZA,

checks:

- Suomi-NPP VIIRS: BOW-TIE effect seems to produce lines of pixels flagged as CLOUDS (CLDICE)
- Peaks at multiples of 5 are not present in OLCI-A/B, MODIS
- More extractions affected by <5 cloudy pixels when compared to OLCI-A/B
- Likely related to a larger impact of scattered clouds at lower resolutions

CLOUD, VIIRS

- More extractions affected by <5 cloudy pixels when compared to OLCI-A/B
- Likely related to a larger impact of scattered clouds at lower resolutions

CLOUD, Aqua

240 EUM/STG-SWG/0/22/VWG, v3, 25 May 2022

CLOUD, OLCI-B

- BOW TIE is not affecting the number of extractions affected by GLINT, since GLINT is mostly located in the center of the swath.
- Glint typically affects all or no pixels
 within the extraction windows

GLINT, VIIRS

• Glint typically affects all or no pixels within the extraction windows

• Glint typically affects all or no pixels within the extraction windows

• Glint typically affects all or no pixels within the extraction windows

