

\& eumetsat

Potential for multi-mission matchups at candidate sites for Copernicus OC-SVC infrastructure location

May 17, 2022
Juan Ignacio Gossn (EUMETSAT)
Frédéric Mélin (JRC)
Ewa Kwiatkowska (EUMETSAT)
David Dessailly (EUMETSAT)

1. This presentation is a part of the material requested by the Expert Review Board to support a recommendation for the location of the Copernicus OC-SVC infrastructure.
2. This presentation shows statistical analyses of Copernicus candidate OC-SVC locations to generate matchups with in situ infrastructure measurements
3. The analyses follow standard community protocols for OC-SVC matchup screening and vicarious gain generation (also used for Copernicus S3 OLCI)
4. Matchups with four global Ocean Colour missions are considered:
I. Copernicus Sentinel-3 OLCI-A,
II. Copernicus Sentinel-3 OLCI-B,
III. US Aqua MODIS (MODISA), and
IV. US Suomi-NPP/VIIRS (VSNPP)
5. The potential for OC-SVC matchups is emphasized, as the number of the actual matchups could only be determined if also in situ infrastructure measurements at those sites were available

Copernicus candidate OC-SVC site locations

Level 2 operational products
OLCI-A [OL_L2M.003.01]: April-2016 to J uly-2021
OLCI-B [OL_L2M.003.01]: April-2018 to J uly-2021
MODI SA [standard, OBPG-GSFC]: J anuary-2005 to Dec-2009
VSNPP [standard, OBPG-GSFC]: J anuary-2013 to Dec-2020

Lat/lon location of Copernicus candidate OC-SVC sites

Stationl D	Country Latitude Longitude			Extractions
Antikythera	Greece	36.20	23.55	
BOUSSOLE	France	43.37	7.90	Extactons
El-Hierro	Spain	27.59	-18.16	Level 2 operational products
Lampedusa-LMP1	Italy	35.50	12.80	
Lampedusa-LMP2	Italy	35.75	12.35	OLCI-B [OL-L2M.003.01]: April-2018 to July-2021
Lampedusa-LMP3	Italy	35.85	12.73	MODI SA [standard]: J anuary-2005 to Dec-2009
Lampedusa-LMP4	Italy	35.78	13.07	VSNPP [standard]: J anuary-2013 to Dec-2020
Madeira-OPT	Portugal	32.62	-17.27	
Madeira-SOW	Portugal	32.25	-17.00	
-MOBY	US	20.82	-157.19	
MSEA-N	Greece	35.74	25.07	
MSEA-S	Greece	34.00	25.00	

\rightarrow An existing reference OC-SVC site operated by NOAA

Methods: EDB (Extraction Data Base) workflow

A common workflow was developed for all the L2 products: EDB (Extraction Data Base), repository accessible at EUMETSAT's GitLab space:
https://gitlab.eumetsat.int/OC/External/edb
(restricted access to Expert Review Board and EUMETSAT staff)

EDB:

1) Locates the extraction window.
2) Produces "minifiles" centred at this window, following pre-existing EUMETSAT formats, but extended to MODIS/VIIRS.
3) Computes and reports all the statistics following a standard common approach among sensors.
A python - How to ad... $\overrightarrow{\text { ज }}^{\boldsymbol{*}}$ [SSTNET-33] Servic...

\checkmark Gitlab \equiv Mewu
E EDB
(1) Projectintornation
(1) Repositor
-1 issues
8\% Merge requests
48 cico
(1) Security a complance
© Depioyments
- infastructure
- Packages $\&$ Registries
H Anaytics
Q wiki
\% Stipoets
@ Setings

Extraction Data Base workflow (EDB)

Purpose: Designed to carculate statistics to compare pertiormance of various potential IVC I location sites under various extraction protocols, with

Run the code
. You need a Linux environment Ikey (t t should work for Mac or Windows, but I haven't checced)
2. You need the following modules instaled in your Python/conds environment a. os [should be instal ed by deffaut] b. sys should be

Methods: Extraction and screening criteria \rightarrow OLCI-A\&B

Standard protocol

```
1) Protocol "SVC_VIS_PP"
Description: Post-processing conditions applied over extractions to estimate SVC VIS gains
O Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicarious-
    calibration-tool; eumetsat.int/OC-SVC).
O Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)
```

Screening conditions

- Window size $=5 \times 5$
- $\mathrm{SZA}<70$ and $O Z A<56$
- Flags = CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, INVALID, COSMETIC, SATURATED, SUSPECT, HISOLZEN, MEGLINT, HIGHGLINT,
SNOW_ICE, WHITECAPS, ANNOT_ABSO_D, ANNOT_MIXR1, ANNOT_TAU06
Number of valid pixels $=25$ (100\%) [valid: non-flagged, low zeniths]
- $\mathrm{CV}\left[\rho_{\mathrm{w}}(412,443,490,510,560 \mathrm{~nm})\right]<15 \%$
- AOT(865 nm) < 0.15
- $\mathrm{CH}_{\text {oc4me }}<0.2 \mathrm{mg} / \mathrm{m}^{3}$

SZA = Solar Zenith Angle
OZA = Observation Zenith Angle
CV = Coefficient of Variation = Standard deviation/Mean $\times 100 \%$
$\rho_{\mathrm{w}}(\mathrm{x} \mathrm{nm})=$ Water reflectance at xnm
AOT(xmm) = Aerosol optical thickness at xmm
$\mathrm{CHL}_{\mathrm{x}}=$ Chlorophyll concentration, algorithm X

Methods: Extraction and screening criteria \rightarrow Aqua/MODIS

Standard protocol

```
1) Protocol "SVC_VIS_PP"
Description: Post-processing conditions applied over extractions to estimate SVC VIS gains
o Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicarious-
    calibration-tool; eumetsat.int/OC-SVC).
o Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)
```

Screening conditions

- Window size $=5 \times 5$
- SZA <70 and OZA <60
- Flags = ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, NAVWARN, MAXAERITER,
CHLWARN, ATMWARN, SEAICE, NAVFAIL, ABSAER, MODGLINT
Number of valid pixels $=25$ (100\%) [valid: non-flagged, low zeniths]
- $\operatorname{CV}\left[\rho_{w}(412,443,488,531,547 \mathrm{~nm})\right]<15 \%$
- AOT(869 nm) < 0.15
- $\mathrm{CHL}_{\mathrm{ocI}}<0.2 \mathrm{mg} / \mathrm{m}^{3}$

SZA = Solar Zenith Angle

OZA = Observation Zenith Angle
CV = Coefficient of Variation = Standard deviation/Mean $\times 100 \%$
$\rho_{\mathrm{w}}(\mathrm{x} \mathrm{nm})=$ Water reflectance at xnm
AOT($\mathbf{x ~ n m}$) = Aerosol optical thickness at $x \mathrm{~nm}$
$\mathrm{CHL}_{\mathrm{x}}=$ Chlorophyll concentration, algorithm X

Methods: Extraction and screening criteria \rightarrow Suomi-NPP/VIIRS

Standard protocol

```
1) Protocol "SVC_VIS_PP"
Description: Post-processing conditions applied over extractions to estimate SVC VIS gains
o Standard community protocol for OC-SVC gain derivation (https://www.eumetsat.int/ocean-colour-system-vicarious-
    calibration-tool; eumetsat.int/OC-SVC).
O Included in the Copernicus OC-SVC requirements (eumetsat.int/OC-SVC-requirements)
```

Screening conditions

- Window size $=5 \times 5$
- $\mathrm{SZA}<70$ and $O Z A<60$
- Flags = ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, NAVWARN, MAXAERITER,
CHLWARN, ATMWARN, SEAICE, NAVFAIL, ABSAER, MODGLINT
Number of valid pixels $=25$ (100\%) [valid: non-flagged, low zeniths]
- $C V\left[\rho_{w}(410,443,486,551 n m)\right]<15 \%$
- AOT(862 nm) < 0.15
- $\mathrm{CH}_{\mathrm{ocl}}<0.2 \mathrm{mg} / \mathrm{m}^{3}$

SZA = Solar Zenith Angle

OZA = Observation Zenith Angle
CV = Coefficient of Variation = Standard deviation/Mean $\times 100 \%$
$\rho_{\mathrm{w}}(\mathrm{x} \mathrm{nm})=$ Water reflectance at xnm
AOT($\mathbf{x ~ n m}$) = Aerosol optical thickness at $x \mathrm{~nm}$
$\mathrm{CHL}_{\mathrm{x}}=$ Chlorophyll concentration, algorithm X

Results with the standard protocol (SVC_VIS_PP)

1. Global results (number of valid extractions for each site, rankings)
2. Average number of extractions per month
3. Seasonality of valid extractions

Global results, OLCI-A and OLCI-B

OLCI-A (SVC_ VI S_PP)

OLCI-B (SVC_ VIS_PP)

S3B_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP

Global results, MODISA and VSNPP

MODI SA (SVC_VIS_PP)

VSNPP (SVC_VIS_PP)

Global results in seasons (SVC_VIS_PP)

OLCI-A: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	5.2	1.9	11.8	1.5	1.3	1.9	2.3	8.7	4.1	12.6	5.6	6.4
MAM	8.7	2.1	14.7	6.9	7.3	7.1	7.5	12	7.9	13.9	8.9	9.7
JJA	18.6	13.1	15.3	11.8	10.8	11.4	12.9	17.6	10.6	14.3	19.1	18.7
SON	9.9	9.9	15.3	7.3	9.6	9.4	9.1	13.5	10.2	14.3	10.6	12.8
Yearly	42.3	27	57	27.6	29.1	29.9	31.8	51.8	32.9	55.1	44.3	47.5

OLCI-B: SVC_VIS_PP

Mean number of valid extractions

Antikythera BOUSSOLE EI-Hierro LMP1 LMP2 LMP3 LMP4 Madeira-OPT Madeira-SOW MOBY MSEA-N MSEA-S

DJF	4.8	1.6	10.2	2.9	1.9	2.9	1.6	8.1	5.5	16.6	6.1
MAM	10.0	1.3	14.7	8.0	8.9	8.6	8.6	12.3	7.1	15.0	12.0
JJA	21.3	13.9	13.8	12.5	8.3	12.8	10.5	17.8	13.6	13.4	21.0
SON	11.6	8.7	13.8	7.0	8.6	8.3	6.7	13.0	$\mathbf{1 8 . 4}$		
Yearly	$\mathbf{4 7 . 8}$	$\mathbf{2 5 . 6}$	$\mathbf{5 2 . 5}$	$\mathbf{3 0 . 4}$	$\mathbf{2 7 . 8}$	$\mathbf{3 2 . 6}$	$\mathbf{2 7 . 5}$	$\mathbf{5 1 . 2}$	$\mathbf{3 5 . 3}$	$\mathbf{5} . \mathbf{5 8 . 8}$	$\mathbf{5 1 2 . 3}$
$\mathbf{5 1 . 4}$	$\mathbf{4 9 . 9}$										

- Highly consistent seasonal and overall performances between OLCI-A and OLCI-B

Global results in seasons (SVC_VIS_PP)

MODI SA: SVC_VI S_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.0	4.4	6.2	1.8	1.0	1.0	1.6	5.8	4.6	12.6	7.0	5.8
MAM	14.6	3.0	6.8	7.4	10.2	4.6	9.8	4.4	7.0	5.6	15.0	13.8
JJA	29.4	11.4	5.4	11.2	15.4	8.6	17.8	9.0	9.4	4.0	31.6	25.0
SON	16.2	6.8	7.8	7.4	9.2	9.0	9.4	8.4	8.4	8.0	16.4	17.6
Yearly	64.2	25.6	26.2	27.8	35.8	23.2	38.6	27.6	29.4	30.2	70.0	62.2

VSNPP: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	10.9	4.4	9.9	2.1	2.1	2.3	4.5	8.0	4.4	15.9	10.0	7.0
MAM	12.5	2.5	6.3	9.1	10.5	7.3	8.8	5.6	6.0	7.8	10.5	10.3
JJA	28.4	23.8	8.5	17.3	18.6	15.9	18.0	9.0	8.3	4.9	24.4	20.4
SON	18.5	18.5	7.5	10.4	9.4	9.5	8.0	8.9	8.0	11.1	17.3	17.6
Yearly	70.3	49.1	32.1	38.9	40.6	34.9	39.3	31.5	26.6	39.6	62.1	55.3

[^0]
Average valid extractions per month (SVC_VIS_PP)

Valid Extraction (all criteria cumulatively)

Conclusions

1) $\mathrm{OLCl}-\mathrm{A}$ and $\mathrm{OLCl}-\mathrm{B}$ valid extractions according to the standard OC-SVC protocol (SVC_VIS_PP)
i. OLCI-A and OLCI-B: MOBY, EI Hierro, Madeira-OPT and MSEA-S/ N (Crete) yield the highest number of valid extractions
ii. El Hierro (57/52.5) and MOBY (55.1/58.8), then secondly Madeira-OPT (51.8/51.2), and thirdly the Create sites, particularly MSEA-N (44.3/51.4) and MSEA-S (47.5/49.8)
iii. The seasonal distribution of valid extractions is the most balanced in the above order
2) MODISA and VSNPP valid extractions according to the standard OC-SVC protocol (SVC_VIS_PP)
i. MODISA and VSNPP: Crete sites MSEA-S/ N and Antikythera yield the highest number of valid extractions, specifically MSEA-N (70/62.1), Antikythera (64.2/70.3), and MSEA-S (62.2/55.3)
ii. MODISA and VSNPP provide markedly worse performance for El Hierro, MOBY and Madeira when compared with OLCI-A and OLCI-B
iii. The seasonal distribution of valid extractions at the Crete sites is relatively balanced but with some decrement in winter months

Extra slides

Investigation of differences in valid extractions between OLCl and VIIRS/MODIS

Average valid extractions per month (SVC_VIS_PP)

Valid Extraction (all criteria cumulatively)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Valid Extraction (all criteria cumulatively)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Valid Extraction (all criteria cumulatively)

1) Flags...

Valid Pixels=100\%

In particular clouds....

OLCI -A

N : Total number of overpasses

VSNPP

Scattered clouds, spatial resolution and window sizes

OLCI-B
 VIIRS

10/04/ 2019 11:13 \qquad 10/04/2019 13:30

Scattered clouds, spatial resolution and window sizes

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3×3 and 5×5 windows:

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3×3 and 5×5 windows:

Analysis of potential adjacency effect to nearby islands

Procedure: Comparison between results with 3×3 and 5×5 windows:

VIIRS: BOW-TIE deletion

V2019153131800.L2_SNPP.OC (NASA GSFC)

Many 5×5 extractions for VIIRS are being affected by these BOWTIEDEL pixels: Examples below: 25 different extractions from 25 different days. Site: El Hierro. Sensor VIIRS (Suomi-NPP)

Since these pixels are masked, these extractions are being rejected because of the requirement of having 100% valid pixels

Many 5×5 extractions for VIIRS are being affected by these BOWTIEDEL pixels: Examples below: 25 different extractions from 25 different days. Site: El Hierro. Sensor VIIRS (Suomi-NPP)

El Hierro, BOWTIEDEL (VIIRS)

Since these pixels are masked, these extractions are being rejected because of the requirement of having 100% valid pixels

Sensitivity of the results to variations in the screening criteria

Sensitivity of the results to variations in the screening

Variations of the screening criteria

2) Protocol "SVC_VIS_PP_50" Description: Same as SVC_VIS_PP, but

- Number of valid pixels ≥ 13 (instead of 25)

3) Protocol "SVC_VIS_PP_T865-0.1" Description: Same as SVC_VIS_PP, but - AOT(NIR) < 0.1 (instead of 0.15)
4) Protocol "SVC_VIS_PP_A865-1" Description: Same as SVC_VIS_PP, but - ANG(NIR) < 1 (additional condition)
5) Protocol "SVC_VIS_PP_CHL-0.1"

Description: Same as SVC_VIS_PP, but

- $\mathrm{CHL}<0.1$ (instead of 0.2)

6) Protocol "SVC_VIS_PP_CHL-0.3"

Description: Same as SVC_VIS_PP, but

- $\mathbf{C H L}<0.3$ (instead of 0.2)

7) Protocol "SVC_VIS_PP_flagSet1"

Description: Same as SVC_VIS_PP, but

- Not considering flags for: moderate glint and absorbing aerosols

```
SZA = Solar Zenith Angle
OZA = Observation Zenith Angle
CV = Coefficient of Variation = Standard deviation/Mean x 100%
\rho
AOT(x nm) = Aerosol optical thickness at x nm
ANG(x nm) = Aerosol Ångström exponent at x nm
CHL
```


Sensitivity of the results to variations in the screening RANKINGS - OLCI-A \& OLCI-B

Sensitivity of the results to variations in the screening RANKINGS - OLCI-A \& OLCI-B

Chlorophyll-a distributions OLCI-A (Screened SVC VIS PP)

El Hierro

- Mostly CHL>0.1mg/m³
- Monomodal

Further conclusions

1) According to standard SVC protocol (SVC_VIS_PP)
i. OLCI-A and OLCI-B: MOBY, EI Hierro, MSEA-S/ N (Crete), Madeira-OPT yield the highest number of valid and annually balanced extractions
ii. MODISA and VSNPP: Crete sites (MSEA-S/ N and Antikythera) yield the highest number of valid extractions, with relatively balanced annual distributions
iii. MODISA and VSNPP provide markedly worse performance for El Hierro, MOBY and Madeira than OLCI-A and OLCI-B.
2) Differences in flagging explain the main differences in the rankings found for MODISA, VSNPP and OLCI.
i. Cloud-flagged pixels are observed 10%-to-20\% more frequently in SeaDAS-processed MODISA and VSNPP wrt. standard OLCI products.
ii. Overall differences: related to different prevalence of scattered clouds among the sites, combined with lower spatial resolution of MODIS and VIIRS and the BOW TIE effect in VIIRS.
3) Slight variations in the screening criteria compared to the standard SC-SVC extraction protocol show:
i. OLCI: Mostly consistent rankings when compared to SVC_VIS_PP (except for e.g. SVC_VIS_PP_CHL-0.1, which yields markedly worsened performance for El Hierro).
ii. MODISA \& VSNPP: Not so consistent results among the protocols, and among the sensors (e.g. BOUSSOLE's performance is highly variable among the different protocols and between MODISA and VSNPP).
4) Overall distributions of water reflectance at 443 nm do not resemble Gaussian monomodal behaviour, although typically do not exhibit evident bi-modality (Sarle coefficient < 0.55, except for MSEA-N and MSEA-S for MODISA).
5) Overall distributions of chlorophyll mostly resemble monomodal or bimodal behaviour, with better-defined modes
i. Bi-modality is mostly observed over Greek and Italian sites with highest (lowest) chlorophyll values in Winter (Summer).

Detailed results for the standard protocol SVC_VIS_PP and for variations in the screening criteria

Sensitivity of the results to variations in the screening

OLCI-A

SVC_VIS_PP

Protocol "SVC_VIS_PP_50"
Description: Same as SVC_VIS_PP, but

- Number of valid pixels $\geq 13(50 \%+1)$

Sensitivity of the results to variations in the screening

OLCI-A

Protocol "SVC_VIS_PP_T865-0.1"
Description: Same as SVC_VIS_PP, but

- AOT(NIR) < 0.1 (instead of 0.15)

Sensitivity of the results to variations in the screening

OLCI-A

Protocol "SVC_VIS_PP_A865-1"
Description: Same as SVC_VIS_PP, but

- ANG(NIR) < 1 (additional condition)

Sensitivity of the results to variations in the screening

OLCI-A

Protocol "SVC_VIS_PP_CHL-0.1"
Description: Same as SVC_VIS_PP, but

- $\mathbf{C H L}<0.1$ (instead of 0.2)

Sensitivity of the results to variations in the screening

OLCI-A

Protocol "SVC_VIS_PP_CHL-0.3"
Description: Same as SVC_VIS_PP, but

- $\mathbf{C H L}<0.3$ (instead of 0.2)

Sensitivity of the results to variations in the screening

OLCI-A

SVC_VIS_PP

Protocol "SVC_VIS_PP_flagSet1"
Description: Same as SVC_VIS_PP, but

- Not considering flags for: moderate glint and absorbing aerosols

Global results in seasons (OLCI-A, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Seasons/Sit	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	5.2	1.9	11.8	1.5	1.3	1.9	2.3	8.7	4.1	12.6	5.6	6.4
MAM	8.7	2.1	14.7	6.9	7.3	7.1	7.5	12	7.9	13.9	8.9	9.7
JJA	18.6	13.1	15.3	11.8	10.8	11.4	12.9	17.6	10.6	14.3	19.1	18.7
SON	9.9	9.9	15.3	7.3	9.6	9.4	9.1	13.5	10.2	14.3	10.6	12.8
Yearly	42.3	27	57	27.6	29.1	29.9	31.8	51.8	32.9	55.1	44.3	47.5

Variation in the protocol: SVC_VIS_PP_50

	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	8.1	2.5	13.3	2.1	2.1	2.7	3.1	10.8	7.0	16.0	7.9	8.1
MAM	9.5	2.1	15.8	8.1	8.3	7.9	7.9	13.1	9.1	14.5	10.6	9.9
JJA	18.9	14.1	15.6	12.7	12.1	12.3	13.1	18.7	11.2	15.7	19.5	19.5
SON	11.4	12.7	16.2	9.8	11.0	11.2	10.0	15.8	12.4	17.2	12.4	13.9
Yearly	48.0	31.5	61.0	32.8	33.6	34.1	34.1	58.6	39.6	63.4	50.4	51.4

NB: Variations of the protocols do not typically change the seasonality performance patterns

Global results in seasons (OLCI-B, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.8	1.6	10.2	2.9	1.9	2.9	1.6	8.1	5.5	16.6	6.1	7.4
MAM	10.0	1.3	14.7	8.0	8.9	8.6	8.6	12.3	7.1	15.0	12.0	11.0
JJA	21.3	13.9	13.8	12.5	8.3	12.8	10.5	17.8	13.6	13.4	21.0	18.4
SON	11.6	8.7	13.8	7.0	8.6	8.3	6.7	13.0	9.1	13.8	12.3	12.9
Yearly	47.8	25.6	52.5	30.4	27.8	32.6	27.5	51.2	35.3	58.8	51.4	49.8

Variation in the protocol: SVC_VIS_PP_50

Seasons/Sit	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	7.1	1.6	13.8	4.2	2.2	3.2	2.9	12.0	7.8	19.2	7.4	10.3
MAM	10.0	1.6	15.7	8.0	8.9	9.9	8.6	14.2	8.1	15.4	13.3	11.6
JJA	21.3	14.9	14.4	12.8	9.3	12.8	10.9	18.1	14.9	16.0	22.6	18.7
SON	12.9	9.7	15.7	8.6	8.9	11.8	8.0	15.9	12.0	17.3	12.9	13.9
Yearly	51.3	27.8	59.5	33.6	29.4	37.7	30.4	60.2	42.7	67.8	56.2	54.6

NB: Variations of the protocols do not typically change the seasonality performance patterns

Global results in seasons (MODISA, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	4.0	4.4	6.2	1.8	1.0	1.0	1.6	5.8	4.6	12.6	7.0	5.8
MAM	14.6	3.0	6.8	7.4	10.2	4.6	9.8	4.4	7.0	5.6	15.0	13.8
JJA	29.4	11.4	5.4	11.2	15.4	8.6	17.8	9.0	9.4	4.0	31.6	25.0
SON	16.2	6.8	7.8	7.4	9.2	9.0	9.4	8.4	8.4	8.0	16.4	17.6
Yearly	64.2	25.6	26.2	27.8	35.8	23.2	38.6	27.6	29.4	30.2	70.0	62.2

Variation in the protocol: SVC_VIS_PP_50

	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	5.4	5.4	10.4	2.6	1.2	1.4	2.4	8.6	8.4	20.0	9.0	9.0
MAM	16.0	3.2	11.0	12.8	12.0	9.4	11.4	7.8	10.4	10.0	18.0	14.8
JJA	33.0	14.2	8.0	18.0	18.8	17.2	19.8	13.6	13.2	7.6	32.8	26.0
SON	19.6	8.0	12.8	12.4	12.6	14.8	12.4	12.4	12.6	12.6	18.6	20.8
Yearly	74.0	30.8	42.2	45.8	44.6	42.8	46.0	42.4	44.6	50.2	78.5	70.6

NB: Variations of the protocols do not typically change the seasonality performance patterns

Global results in seasons (VSNPP, SVC_VIS_PP vs. SVC_VIS_PP_50)

Protocol 1: SVC_VIS_PP

Seasons/Sites	Mean number of valid extractions											
Seasons/Sites	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	10.9	4.4	9.9	2.1	2.1	2.3	4.5	8.0	4.4	15.9	10.0	7.0
MAM	12.5	2.5	6.3	9.1	10.5	7.3	8.8	5.6	6.0	7.8	10.5	10.3
JJA	28.4	23.8	8.5	17.3	18.6	15.9	18.0	9.0	8.3	4.9	24.4	20.4
SON	18.5	18.5	7.5	10.4	9.4	9.5	8.0	8.9	8.0	11.1	17.3	17.6
Yearly	70.3	49.1	32.1	38.9	40.6	34.9	39.3	31.5	26.6	39.6	62.1	55.3

Variation in the protocol : SVC_VI S_PP_50

Seasons/Sites	Mean number of valid extractions											
	Antikythera	BOUSSOLE	El-Hierro	LMP1	LMP2	LMP3	LMP4	Madeira-OPT	Madeira-SOW	MOBY	MSEA-N	MSEA-S
DJF	14.9	6.0	14.4	2.4	2.5	2.4	5.8	13.0	8.6	24.4	13.8	10.4
MAM	16.9	3.3	9.5	12.8	13.0	11.3	11.5	10.1	8.4	12.1	15.5	13.3
JJA	36.3	30.1	13.4	23.9	24.6	23.8	23.4	13.9	12.4	9.3	31.1	26.3
SON	23.1	23.5	13.1	13.5	13.4	12.9	11.4	13.0	13.1	15.5	22.4	23.3
Yearly	91.2	62.9	50.4	52.5	53.5	50.3	52.0	50.0	42.5	61.3	82.8	73.1

NB: Variations of the protocols do not typically change the seasonality performance patterns

OLCI-A

OLCI-B


```
OLCI-B
```


OLCI-A

Suomi-NPP-VII RS

Monthly prevalence of valid extractions SVC_VIS_PP

Monthly prevalence of valid extractions (SVC_VIS_PP)

Results shown as "fraction" of overpasses that matched certain criterion per month

Monthly prevalence of valid extractions (SVC VIS PP)

Valid Extraction (all criteria cumulatively)

Monthly prevalence of valid extractions (SVC VIS PP)
Valid Pixels=100\%

Month

El-Hierro

Month

Monthly prevalence of valid extractions (SVC VIS PP)
AOT[NIR]<0.15

Monthly prevalence of valid extractions (SVC VIS PP)

CHL<0.2

S3A
\rightarrow S3B

- Aqua
\rightarrow Suomi-NPP

Month

Monthlv prevalence of valid extractions (SVC VIS PP)

CV<15\%

Monthly nrevalence of validextractions (SVC VIS PP)

S3A
S3B

- Aqua
\rightarrow Suomi-NPP

Monthly nrevalence of validextractions (SVC VIS PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Screening criteria grouped for each site

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

BOUSSOLE

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

El-Hierro

Monthly prevalence of valid extractions (SVC_VIS_PP)

Lampedusa-LMP1

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Lampedusa-LMP2

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Lampedusa-LMP3

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Lampedusa-LMP4

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Madeira-OPT

Monthly prevalence of valid extractions (SVC_VIS_PP)

Madeira-SOW

Monthly prevalence of valid extractions (SVC_VIS_PP)

Madeira-SOW

Monthly prevalence of valid extractions (SVC_VIS_PP)

MOBY

$1=100 \%$ of valid overpasses

- not CLOUD
* not GLINT
\rightarrow not HI-SZA
- Valid Pixels=100\%
+- Valid Extraction (all crit.)

Monthly prevalence of valid extractions (SVC_VIS_PP)

MOBY

Aqua

S3B

Suomi-NPP

$1=100 \%$ of valid overpasses

- - Valid Pixels=100\%
* CV[410-551]<15\%
\rightarrow AOT[862]<0.15
- CHL<0.2
- Valid Extraction (all crit.)

Monthly prevalence of valid extractions (SVC_VIS_PP)

Seasonal variability (unscreened/screened according to SVC_VIS_PP)

SVC_VIS_PP: Distributions of ρ_{w} and CHL

Sarle's coefficient (S)

$\mathbf{S} \in[0-1]$
Theoretical expression

$$
\sigma=\frac{\gamma^{2}+1}{\kappa} \quad \begin{aligned}
& \mathbf{Y} \rightarrow \text { Skewness } \\
& \mathbf{k} \rightarrow \text { Kurtosis }
\end{aligned}
$$

- If $S>0.55 \rightarrow$ Distribution exhibits statisticallysignificant bimodal or heavily-skewed monomodal behaviour.
- If $S \leq 0.55 \rightarrow$ Distribution is mainly monomodal.

Finite sample expression

$$
S=\frac{g^{2}+1}{k+\frac{3(n-1)^{2}}{(n-2)(n-3)}}
$$

g \rightarrow Sample skewness
$\mathrm{k} \rightarrow$ Sample excess kurtosis
$\mathrm{n} \rightarrow$ Sample size

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Antikythera, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Antikythera, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Antikythera, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Antikythera, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

BOUSSOLE, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

BOUSSOLE, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

BOUSSOLE, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

BOUSSOLE, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

El-Hierro, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

El-Hierro, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

El-Hierro, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

El-Hierro, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP1, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP1, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP1, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP1, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP2, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP2, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP2, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP2, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP3, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP3, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP3, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP3, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP4, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP4, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP4, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Lampedusa-LMP4, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-OPT, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-OPT, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-OPT, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-OPT, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-SOW, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-SOW, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-SOW, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Madeira-SOW, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MOBY, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MOBY, Aqua/MODIS (Protocol: SVC_VIS_PP)
Screened (SVC

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MOBY, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-N, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-N, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-N, Aqua/MODIS (Protocol: SVC_VIS_PP)
Screened (SVC

n
0
0
0
0
0

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-N, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-S, S3A/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-S, S3B/OLCI (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-S, Aqua/MODIS (Protocol: SVC_VIS_PP)

Seasonal variability (unscreened/screened acc. to SVC_VIS_PP)

MSEA-S, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (unscreened and screened according to SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Antikythera, S3A/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Antikythera, S3B/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Antikythera, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Antikythera, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)
suosees

Spectra (all and screened according to SVC_VIS_PP)

BOUSSOLE, S3A/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

BOUSSOLE, S3B/OLCI (Protocol: SVC_VIS_PP)
n
-
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

BOUSSOLE, Aqua/MODIS (Protocol: SVC_VIS_PP)

O
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

BOUSSOLE, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

El-Hierro, S3A/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

El-Hierro, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

El-Hierro, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Q
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP1, S3A/OLCI (Protocol: SVC_VIS_PP)

Q
0
0
0
0
0
0

Spectra
---- Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP1, S3B/OLCI (Protocol: SVC_VIS_PP)
$\mathscr{6}$
6
0
10
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP1, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP1, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP2, S3A/OLCI (Protocol: SVC_VIS_PP)

Q
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP2, S3B/OLCI (Protocol: SVC_VIS_PP)

n 0 0 0 0 0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP2, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP2, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP3, S3A/OLCI (Protocol: SVC_VIS_PP)

Q
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP3, S3B/OLCI (Protocol: SVC_VIS_PP)

日
0
0
0
0
0
ט

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP3, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP3, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP4, S3A/OLCI (Protocol: SVC_VIS_PP)

日
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP4, S3B/OLCI (Protocol: SVC_VIS_PP)

Y 0 0 0 0 0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP4, Aqua/MODIS (Protocol: SVC_VIS_PP)

0
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Lampedusa-LMP4, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Q
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

Madeira-OPT, S3A/OLCI (Protocol: SVC_VIS_PP)

日
0
0
0
0
0
U

Spectra
Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

Madeira-OPT, S3B/OLCI (Protocol: SVC_VIS_PP)

日
0
0
0
0
0
U

Spectra (all and screened according to SVC_VIS_PP)

Madeira-OPT, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Madeira-OPT, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

Madeira-SOW, S3A/OLCI (Protocol: SVC_VIS_PP)

Y
0
0
0
0
0
0

Spectra
Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

Madeira-SOW, S3B/OLCI (Protocol: SVC_VIS_PP)

Y
0
0
0
0
0
0

Spectra
-- Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

Madeira-SOW, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra
-- Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

Madeira-SOW, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MOBY, S3A/OLCI (Protocol: SVC_VIS_PP)

U
0
0
0
0
0

Spectra
---- Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

MOBY, S3B/OLCI (Protocol: SVC_VIS_PP)

Y
0
0
0
0
0
0

Spectra
Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

MOBY, Aqua/MODIS (Protocol: SVC_VIS_PP)
n
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

MOBY, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

9
0
0
0
0
0

Spectra
Percentiles 25/50/75
$0.1 \times$ Sarle

Spectra (all and screened according to SVC_VIS_PP)

MSEA-N, S3A/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MSEA-N, S3B/OLCI (Protocol: SVC_VIS_PP)

6
6
6
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

MSEA-N, Aqua/MODIS (Protocol: SVC_VIS_PP)

0
0
0
0
0
0
0

Spectra (all and screened according to SVC_VIS_PP)

MSEA-N, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MSEA-S, S3A/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MSEA-S, S3B/OLCI (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MSEA-S, Aqua/MODIS (Protocol: SVC_VIS_PP)

Spectra (all and screened according to SVC_VIS_PP)

MSEA-S, Suomi-NPP/VIIRS (Protocol: SVC_VIS_PP)

0
0
0
0
0
0
0

Histograms/spectra screened

 SVC VIS PPAqua_MODIS_SVC_VIS_PP

Antikythera

Lampedusa-LMP1

Lampedusa-LMP4

MOBY

BOUSSOLE

Madeira-OPT

MSEA-N

El-Hierro

Madeira-SOW

MSEA-S

EUMETSAT

S3B_OLCI_SVC_VIS_PP

Antikythera
BOUSSOLE

Madeira-OPT
El-Hierro

Lampedusa-LMP4

Antikythera

Lampedusa-LMP4

MOBY

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

MSEA-N

El-Hierro

Aqua_MODIS_SVC_VIS_PP

Antikythera

BOUSSOLE

El-Hierro

Antikythera

Lampedusa-LMP1

Lampedusa-LMP4

$\rho_{w}(443)$
$\rho_{w}(443)$

BOUSSOLE

Madeira-OPT

Lampedusa-LMP3

Antikythera

Lampedusa-LMP1

BOUSSOLE

Antikythera

Lampedusa-LMP1
$m d n=0.004$

Lampedusa-L'MP4

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

$\rho_{w}(555)$
te l

El-Hierro

Lampedusa-LMP3

Madeira-SOW

Antikythera

Lampedusa-LMP1

mdn=0.005

Lampedusa-L'MP4

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

Madeira-SÓW

MSEA-S
$\rho_{w}(560)$
$40-\begin{aligned} & \mathrm{man}=0.005 \\ & \mathrm{IQR}=0.001 \\ & \mathrm{~S}=0.34 \\ & \mathrm{~N}=229\end{aligned}$
-0.000

S3B_OLCI_SVC_VIS_PP

Antikythera

Lampedusa-LMP1

Lampedusa-LMP4

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

El-Hierro

Madeira-SOW

Antikythera

Lampedusa-LMP1

Lampedusa-L'MP4

$\rho_{w}(551)$

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

$-0.005 \quad 0.000 \quad 0.005 \quad 0.010$
$\rho_{w}(551)$

El-Hierro

Lampedusa-LMP3

Madeira-SÓW

Antikythera

Lampedusa-LMP1

Lampedusa-LMP4

$$
\begin{array}{lll}
-0.002 & 0.000 & 0.002
\end{array}
$$

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

El-Hierro

Madeira-SOW

Antikythera

Lampedusa-LMP1

BOUSSOLE

Lampedusa-LMP2

Madeira-SOW

Antikythera

Lampedusa-LMP1

Lampedusa-LMP4

BOUSSOLE

Lampedusa-LMP2

El-Hierro

Lampedusa-LMP3

$\begin{array}{lll}-0.002 & 0.000 & 0.002\end{array}$

Antikythera

BOUSSOLE

Lampedusa-LMP4

Lampedusa-LMP2

Madeira-OPT

El-Hierro

Lampedusa-LMP3

Madeira-SOW

S3A_OLCI_L2_IPF_07.01_OL_L2M.003.01_FR_5_SVC_VIS_PP

EUMETSAT

EUMETSAT

Impact of different screening criteria in SVC_VIS_PP

BOUSSOLE $(\mathrm{N}=1180)$

Absorbing aerosols

El-Hierro ($\mathrm{N}=973$)

OLCI-B

Absorbing aerosols

$$
\text { Lampedusa-LMP1 }(\mathrm{N}=619)
$$

BOUSSOLE $(\mathrm{N}=728)$
El-Hierro ($\mathrm{N}=613$)
$M O D S A$

Absorbing aerosols

BOUSSOLE $(\mathrm{N}=4563)$

El-Hierro ($\mathrm{N}=3653$)

AOT[865]>0.15

Lampedusa-LMP3 ($\mathrm{N}^{*}=283$)

Lampedusa-LMP4 ($\mathrm{N}^{*}=302$)

Madeira-OPT $\left(N^{*}=343\right)$
Madeira-SOW $\left(\mathrm{N}^{*}=219\right)$

Antikythera $\left(\mathrm{N}^{*}=204\right)$
OLCI-B

lid $=148$

Lampedusa-LMP4 (N*=168) AOT[865]>0.15

Valid $=86$
 OT[865]>0.15

AOT[865]>0.15 $\mathrm{AOT}[865]>0.15 \quad 13 \quad$ Valid $=18$

BOUSSOLE $\left(N^{*}=201\right)$
El-Hierro $\left(\mathrm{N}^{*}=221\right)$

Madeira-OPT $\left(\mathrm{N}^{*}=197\right)$

AOT $[865]>0.15 \quad$ Valid $=79$

Lampedusa-LMP2 $\left(\mathrm{N}^{*}=188\right)$ AOT[865] >0.15 Valid $=87$

Valid $=158$

El-Hierro $\left(\mathrm{N}^{*}=141\right)$

Lampedusa-LMP4 ($\mathrm{N}^{*}=237$)
Valid $=193$ OT[869] $>0.15 \quad$ Valid $=139$

AOT[869]>0.15

Lampedusa-LMP2 ($\mathrm{N}^{*}=265$)

Madeira-OPT $\left(N^{*}=158\right)$

Lampedusa-LMP3 ($\mathrm{N}^{*}=162$)
AOT[869]>0.15 $\quad 4 \quad$ Valid $=179$

Madeira-SOW $\left(\mathrm{N}^{*}=167\right)$

Antikythera $\left(\mathrm{N}^{*}=600\right)$
BOUSSOLE $\left(\mathrm{N}^{*}=749\right)$
EI-Hierro $\left(\mathrm{N}^{*}=290\right)$
VSNPP
AOT[862]>0.15

Lampedusa-LMP2 $\left(\mathrm{N}^{*}=476\right) \quad$ Lampedusa-LMP3 $\left(\mathrm{N}^{*}=387\right)$
AOT[862]>0.15 $19 \quad$ Valid=311

Lampedusa-LMP4 ($\mathrm{N}^{*}=393$)

Number of pixels affected by clouds within each extraction (5x5)

- Suomi-NPP VIIRS: BOW-TI E effect seems to produce lines of pixels flagged as CLOUDS (CLDICE)
- Peaks at multiples of 5 are not present in OLCI-A/ B, MODIS
- More extractions affected by <5 cloudy pixels when compared to OLCI-A/ B
- Likely related to a larger impact of scattered clouds at lower resolutions

Number of pixels affected by clouds within each extraction (5×5)

- More extractions affected by <5 cloudy pixels when compared to OLCI-A/ B
- Likely related to a larger impact of scattered clouds at lower resolutions

Number of pixels affected by clouds within each extraction (5×5)

CLOUD, OLCI-A

Number of pixels affected by clouds within each extraction (5×5)

CLOUD, OLCI-B

Number of pixels affected by glint within each extraction (5×5)

- BOW TIE is not affecting the number of extractions affected by GLI NT, since GLI NT is mostly located in the center of the swath.
- Glint typically affects all or no pixels within the extraction windows

GLINT, VIIRS

Number of pixels affected by glint within each extraction (5×5)

- Glint typically affects all or no pixels within the extraction windows

GLINT, Aqua

Number of pixels affected by glint within each extraction (5x5)

- Glint typically affects all or no pixels within the extraction windows

GLINT, OLCI-A mex

BOUSSOLE

Lampedusa-LMP2

Madeira-OPT

El-Hierro

Lampedusa-LMP'3

Madeira-SOW

Number of pixels affected by glint within each extraction (5×5)

- Glint typically affects all or no pixels within the extraction windows

GLINT, OLCI-B

Lampedusa-LMP2

Madeira-OPT

El-Hierro

Lampedusa-LMP'3

Madeira-SOW

$0.8 \frac{\text { MSEA-S }}{\square}$

Number of affected pixels (out of 25)

[^0]: - Not as consistent seasonal and overall performances when comparing

