NOAA-21 VIIRS Postlaunch On-Orbit Performance and Calibration/Validation Results

Wenhui Wang1, Changyong Cao2, Slawomir Blonski3, Xi Shao1, Taeyoung Choi3, Sirish Uprety1, Khalil Ahmad3, Yan Bai1, and Priya Pillai3

1CISESS/University of Maryland – College Park, USA
2NOAA/NESDIS/STAR, USA
3Global Science & Technology (GST), Inc., U.S.A.
NOAA/STAR VIIRS Radiance Team

EUMETSAT Meteorological Satellite Conference
Malmö, Sweden, 11-15 September 2023
Outline

- Introduction
- NOAA-21 VIIRS geolocation performance
- NOAA-21 VIIRS thermal bands (TEB) performance
- NOAA-21 VIIRS Day-Night/Band (DNB) performance
- NOAA-21 VIIRS solar bands (RSB) performance
- Summary
Introduction

- The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the NOAA-21 satellite (previously known as JPSS-2) was launched on November 10, 2022.
 - Following the successful operations of the VIIRS on the S-NPP/NOAA-20 satellites.

- There are 22 spectral bands on VIIRS:
 - 14 Reflective Solar Bands (RSB)
 VNIRs: I1-I2 and M1-M7
 SWIRs: I3 and M8-M11
 - 7 Thermal Emissive Bands (TEB)
 MWIRs: I4 and M12-M13
 LWIRs: I5 and M14-M16
 - 1 Day/Night band (DNB, 750m)
 I1-I5 (375m) M1-M16 (750m)

- More than 26 Environmental Data Records (EDRs) are derived from the VIIRS Sensor Data Records (SDR).
Post-Launch NOAA-21 VIIRS Cal/Val Timeline

Flight Activity

- **L + 0 (11/10/2022)**: JPSS-2 Launch
- **L + 10 (11/20/2022)**: VIIRS Activation
- **L + 21 (12/1/2022)**: DNB Straylight Test
- **L + 25 (12/5/2022)**: Nadir Doors Open
- **L + 40 (12/20/2022)**: Final Orbit
- **L + 90 (2/8/2023)**: Cryoradiator Door Open
- **L + 92 (2/10/2023)**: All Detectors Stable
- **L + 102 (2/20/2023)**: DNB Calibration (new moon)
- **L + 105 (2/23/2023)**: MMOG (3 days)
- **L + 112 (3/2/2023)**: Lunar Calibration
- **L + 113 (3/3/2023)**: TEB Detectors 82K → 80K
- **L + 116 (3/6/2023)**: Yaw Maneuvers (2 days)
- **L + 120 (3/10/2023)**: Pitch Maneuver (“backflip”)
- **L + 122 (3/12/2023)**: OBC BB WUCDs (3 - 2 days)
- **L + 127 (3/17/2023)**: DNB Onboard Update
- **L + 131 (3/21/2023)**: DNB Calibration
- **L + 140 (3/30/2023)**: DNB Calibration (new moon)
- **L + 266 (8/3/2023)**: Dates in red imposed by moon phase

Ground Activity

- **Begin Cal/Val Tasks:**
 - Onboard Calibrators & SDSM
 - Basic Functionality
 - DNB Straylight
 - Image Quality
 - VNIR Calibration
 - Orbit & Geolocation
- **Begin VIIRS SDR Production**
- **1st Delivery of Updated LUTs:** VNIR Cal., GEO
- **VIIRS First Light Images for VNR Data**
- **Beta Maturity**
 - Continue Cal/Val Tasks:
 - SWIR and TEB Calibration
 - DNB Calibration
 - Inter-Satellite Comparisons
- **2nd Delivery of Updated LUTs:** SWIR/DNB Cal.
- **Provisional Maturity**
- **Validated Maturity**
Geolocation Performance

- NOAA-21 VIIRS geolocation have been performing well and stable since the post-launch mounting matrix update on January 12, 2023.

Overall uncertainty: 395 m
Meets the 400 m required at the 3-sigma, 99.7%, level.
TEB Gains and MWIR Degradations

- LWIR gains have been generally stable after since March 3, 2023 (CFPA 82 K → 80K).
 - The Feb 23 MMOG was successful.
 - Increases by 4-11% after the switch of CFPA temperatures to 80 K.

- MWIR gains have been continuously degrading since mid-March.
 - Band-averaged degradations up to ~2.8%.
 - Co-incident with the much faster degradations in the SWIR bands (slide #11).

- The impacts on NEdTs/SDRs are negligible so far.

![Graph showing LWIR and MWIR gains and degradations](image-url)
LWIRs agree well with co-located CrIS observed/gap-filled spectra during nominal operations.
- Biases are within ~0.1 K, comparable to NOAA-20 and S-NPP.

The calibration of MWIRs are also stable.
- M13 Bias: ~0.13 K
Operational Corrections of TEB Calibration Biases

- Updated LWIR calibration coefficients have been implemented operationally since June 7, 2023.
 - To mitigate LWIR scan angle and scene temperature dependent biases.

- Warm-Up Cool-Down (WUCD) bias correction coefficients have been developed, will be delivered for operations before the next WUCD.
 - Reduce biases up to 0.05 K ~0.01 K
 - Similar to NOAA-20
DNB Radiometric Calibration Performance

- DNB calibration has been stable after the March 23 LGS gain update.
- NOAA-21 DNB agrees with NOAA-20 within ~1.1%, over DCCs (daytime) and Libya-4 (under moon light).
- Accounted for lunar phase difference with lunar irradiance model, lunar zenith angle and SRF difference.

![Daytime DCC Time Series](image1)

![1st calibration LGS gain update](image2)

![Relative difference](image3)

DNB Radiometric Bias Assessment (Libya-4, under Moon Light)
NOAA-21 DNB stray light is significantly lower than both SNPP/NOAA-20.
- 50% lower in comparison with NOAA-20.

NOAA-21 DNB stray light correction started on March 30, 2023,
- First new moon data: March 21.
- Routinely developed/delivered (over 12 months) for the operational processing.
- Stray lights are effectively removed over both northern and southern hemisphere.
On-Orbit Solar and Scheduled Lunar Derived F-Factors

- VNIR (I1-I2 & M1-M7) gains are stable over time.
- SWIR (I3 and M8-M11) gains are rapidly changing.
 - M8 exhibits the largest degradations.
 - Detector dependent.

M8 Offline SD F-factors

~30% in det #16
8/11/2023
The on-orbit calibration of the VNIR bands have controlled with the F-PREDICTED LUT
- Constant since Jan. 12, 2023.

SWIR calibrations have been updated automatically for every orbit using the RSBAutoCal since Aug. 17, 2023.

To improve radiometric agreements with NOAA-20 VIIRS, bias corrections applied.

SWIR Bias corrections applied
- +1.5% for band I3
- +2.0% for bands M8 and M9
- +2.5% for M10
- +4.0% for M11
RSB SDR Calibration Stability and Biases

- VNIR SDRs have been stable since Jan. 12, 2023
- SWIR SDRs become stable since June 1, 2023.
- NOAA-21 RSBs agree with NOAA-20 VIIRS within the required uncertainty of the absolute radiometric calibration (±2%).

![Daily Deep Convective Cloud (DCC) Time Series](image)

VNIR

<table>
<thead>
<tr>
<th></th>
<th>Avg</th>
<th>Std (%)</th>
<th>Trend (±5DCS/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.903</td>
<td>0.9</td>
<td>0.07±0.81%</td>
</tr>
<tr>
<td>M2</td>
<td>0.900</td>
<td>0.9</td>
<td>0.13±0.82%</td>
</tr>
<tr>
<td>M3</td>
<td>0.903</td>
<td>0.9</td>
<td>0.07±0.81%</td>
</tr>
<tr>
<td>M4</td>
<td>0.880</td>
<td>1.1</td>
<td>1.3±0.81%</td>
</tr>
<tr>
<td>M5</td>
<td>0.900</td>
<td>0.9</td>
<td>0.52±0.82%</td>
</tr>
<tr>
<td>M7</td>
<td>0.897</td>
<td>0.7</td>
<td>0.72±0.82%</td>
</tr>
<tr>
<td>N1</td>
<td>0.878</td>
<td>1.0</td>
<td>0.27±0.81%</td>
</tr>
<tr>
<td>N2</td>
<td>0.879</td>
<td>0.7</td>
<td>1.00±0.81%</td>
</tr>
</tbody>
</table>

SWIR

<table>
<thead>
<tr>
<th></th>
<th>Avg</th>
<th>Std (%)</th>
<th>Trend (±5DCS/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.686</td>
<td>2.4</td>
<td>-2.36±2.12%</td>
</tr>
<tr>
<td>M2</td>
<td>0.580</td>
<td>1.6</td>
<td>-8.22±1.23%</td>
</tr>
<tr>
<td>M3</td>
<td>0.230</td>
<td>2.6</td>
<td>9.74±2.20%</td>
</tr>
<tr>
<td>M4</td>
<td>0.351</td>
<td>2.2</td>
<td>10.87±1.97%</td>
</tr>
<tr>
<td>M5</td>
<td>0.250</td>
<td>2.4</td>
<td>9.74±2.20%</td>
</tr>
</tbody>
</table>
NOAA-21 VIIRS SNR/NEDT

- NOAA-21 VIIRS SNRs/NEdTs have been comparable to NOAA-20/S-NPP.
 - TEB NEdTs well within specifications. LWIR NEdTs further improved after CFPA=80 K.
 - RSB/DNB SNRs meet the requirements.
 - The impacts of on-going S/MWIR degradations are small so far.
Summary

- **NOAA-21 VIIRS instrument have been performing well overall.**
 - Feb 23 MMOG successfully removed potential ice contamination.
 - CFPA temperatures were switched from 82 K to 80 K to further improve the performance.
 - SNRs/NEDTs are well within specifications.
 - LWIR and VNIR gains are generally stable.
 - S/MWIR degradations are closely monitored.

- **NOAA operational NOAA-21 VIIRS SDRs have been generally stable.**
 - Achieved Validated Maturity Status on June 23, 2023 (https://www.star.nesdis.noaa.gov/jpss/AlgorithmMaturity.php).
 - TEB SDRs agree well with co-located CrIS data; LWIR biases were further reduced; WUCD biases will be mitigated before the next event.
 - DNB stray light has been corrected since March 30, 2023.
 - VNIR SDRs have been stable based on DCC and SNO trending results.
 - SWIR degradations have been timely mitigated by frequent calibration updates; RSBAutoCal was turned on since Aug. 17, 2023.
 - The impacts of S/MWIR degradations are small so far.
DISCLAIMER

The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect those of NOAA or the Department of Commerce.