Vicarious calibration monitoring for MWI & ICI using NWP fields

Final Meeting

25th January 2024 EUMETSAT, Darmstadt

David I. Duncan, Alan J. Geer, Niels Bormann, Mohamed Dahoui

© ECMWF March 18, 2024

Outline

- 1) MWI and ICI introduction
- 2) Project concept
 - > Why all-sky monitoring for cal/val?
 - Data selection for cal/val from NWP model output
- 3) Technical developments MWIICI and the IFS
- 4) Comparing IFS simulations to EUMETSAT test data
- 5) Application of cal/val monitoring system to current sensors
 - ➢ GMI, SSMIS, AMSR2
- 6) Monitoring website
- 7) Conclusions

MWI & ICI Introduction

The EUMETSAT Polar System (EPS) Second Generation will carry Europe's first ever microwave imagers

Metop-SG-B will hold two conically-scanning microwave radiometers:

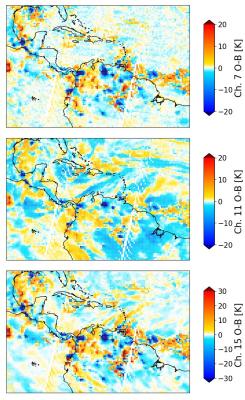
- MWI 26 channels measuring from 18–191 GHz
- ICI 13 channels measuring from 175–668 GHz
- > Together they span a *wider frequency range* than any imagers before
- > ICI will measure at higher frequencies than any operational MW radiometer
- MWI and ICI combined will provide an *unprecedented constraint* for the global hydrological cycle in weather and climate models


Project concept – why all-sky monitoring?

Most of the frequencies observed by MWI are already assimilated at ECMWF in "all-sky" conditions – radiances are used even in scenes with cloud and precipitation

- The forward model RTTOV-SCATT simulates the emission and scattering from liquid and frozen hydrometeors in the model
- For the assimilation, observation errors scale with cloud amount, as model errors typically increase with cloud

For sub-mm channels of ICI, there is no equivalent sensor in orbit so an external reference (like the NWP model) is required


For cal/val, the ECMWF model allows comparison of observed radiances with model-equivalent radiances *everywhere* and in *near-real time*

From Lonitz et al. (2022)

Project concept – why all-sky monitoring?

O-B at 118 & 183 GHz channels From Duncan et al. (2023)

By using the ECMWF model as a reference, short-range forecasts of modelled radiances (the model background, B) can be compared against all MWI and ICI observations

Model fields are interpolated to the observation locations \geq

Producing departure (i.e. O-B) statistics \geq

Departure statistics are then directly comparable to similar microwave imagers in the ECMWF system:

- GMI on the GPM Core platform since 2014
- SSMIS on the DMSP F17 & F18 platforms since 2006 \geq
- > AMSR2 on GCOM-W platform since 2012

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

We aim to:

- Use as much data as possible in our cal/val sample
- But exclude areas of known model bias (e.g. sea-ice, thick clouds)
- Provide 3 samples for different cal/val applications:
 - 1) Stringent
 - 2) Dynamic range
 - 3) Unified

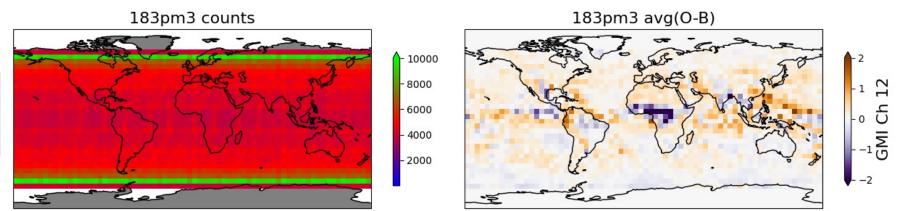
We aim to:

- Use as much data as possible in our cal/val sample
- But exclude areas of known model bias (e.g. sea-ice, thick clouds)
- Provide 3 samples for different cal/val applications:
 - 1) Stringent
 - 2) Dynamic range
 - 3) Unified

Define channel-based 'symmetric' cloud impact (CI) parameter that is sensitive to cloud in both the model and the observation:

$$CI_{Ch} = |O_{Ch} - B_{Ch,clr}|/2 + |B_{Ch} - B_{Ch,clr}|/2$$

Obs. Clear-sky B All-sky B

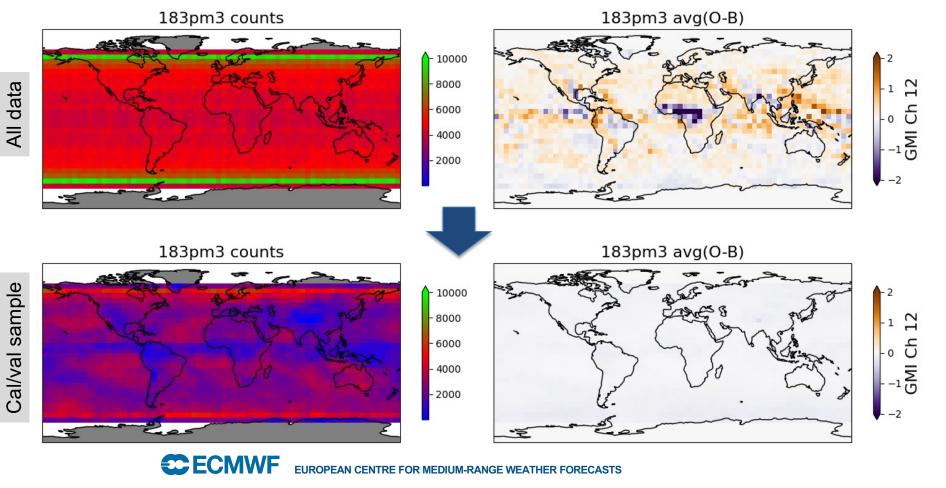

In combination with the surface-to-space transmittance (τ), we can define thresholds to avoid surface and cloud contamination

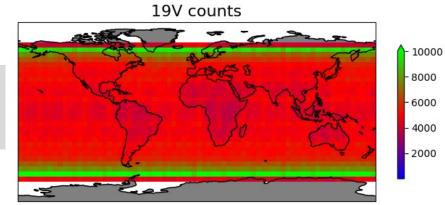
To simplify the full set of MWI & ICI channels, they are grouped into either 'window' or 'sounder' channel groups:

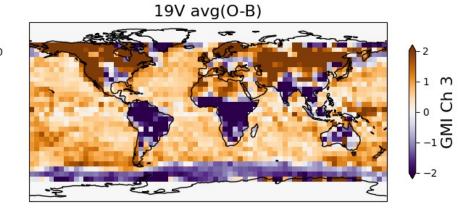
Channel Group	Stringent
Window channels	land< 1%, <i>CI</i> < 2 <i>K</i> , <i>SST</i> > 277 <i>K</i>
Sounder channels	$\tau < 0.02$ or land $< 0.01, CI < 0.5K$

Some final checks are added to avoid possible sea-ice, etc.

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

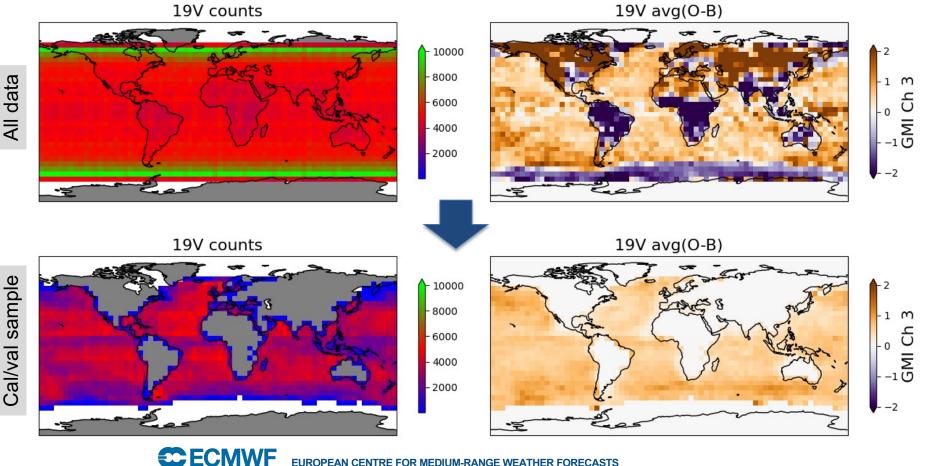

All data


8


GMI 183±3 channel

Project concept – data selection for cal/val analysis

Stringent data selection applied


EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

All data

GMI 19V channel

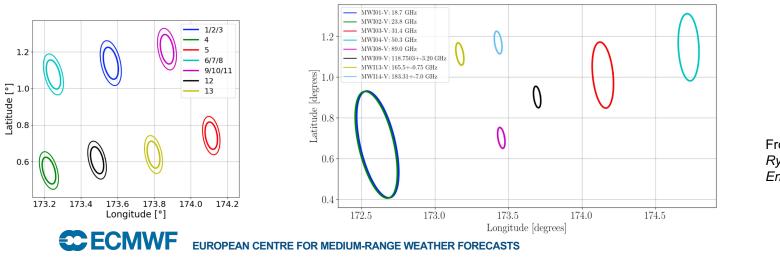
Project concept – data selection for cal/val analysis

Stringent data selection applied

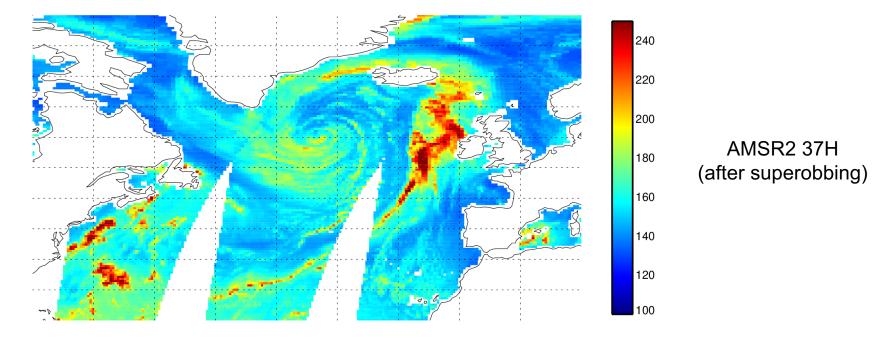
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

11

Outline

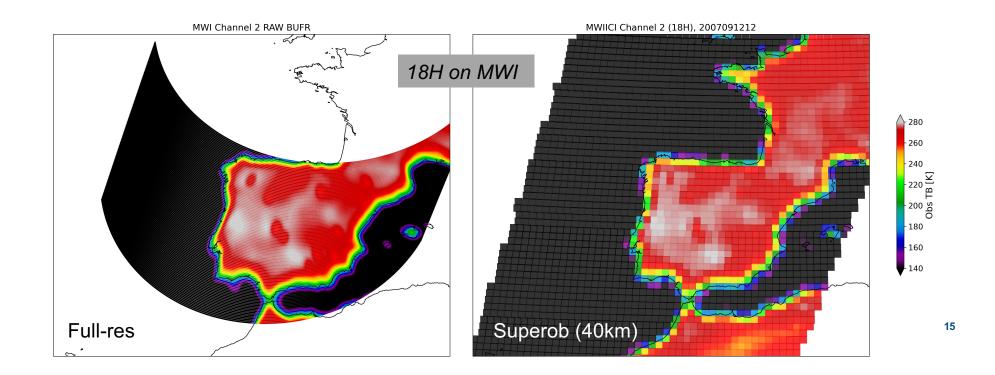

- 1) MWI and ICI introduction
- 2) Project concept
 - Why all-sky monitoring for cal/val?
 - Data selection for cal/val from NWP model output
- 3) Technical developments MWIICI and the IFS
- 4) Comparing IFS simulations to EUMETSAT test data
- 5) Application of cal/val monitoring system to current sensors
 - ➢ GMI, SSMIS, AMSR2
- 6) Monitoring website
- 7) Conclusions

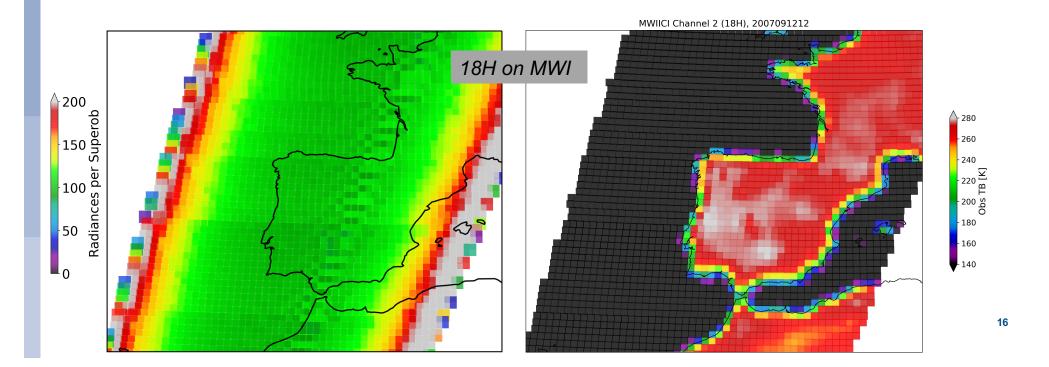
The ECMWF data assimilation system is the Integrated Forecasting System (IFS)


- > The IFS expects (and is optimized for) co-located observation vectors
- > Zenith angle can vary by channel

MWI – 26 channels over 8 horns **ICI** – 13 channels over 7 horns 15 geolocations!

From: *Rydberg & Eriksson (2019) Eriksson et al. (2019)*


In the IFS, microwave imager radiances are *superobbed* (averaged into super-observations) at 40 km resolution Superobbing acts to homogenise observations and make them more representative for assimilation \rightarrow the model 'effective resolution' for clouds and precipitation is roughly this scale

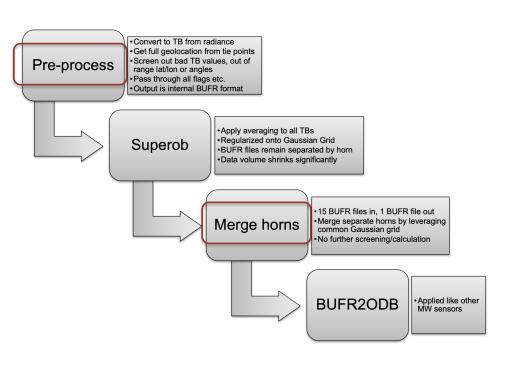

MWI and ICI feature very heavy spatial over-sampling, even compared to other MW imagers. Superobbing thus decreases data volume very significantly. On average:

- > 130 observations per superob for MWI channels
- > 73 observations per superob for ICI channels

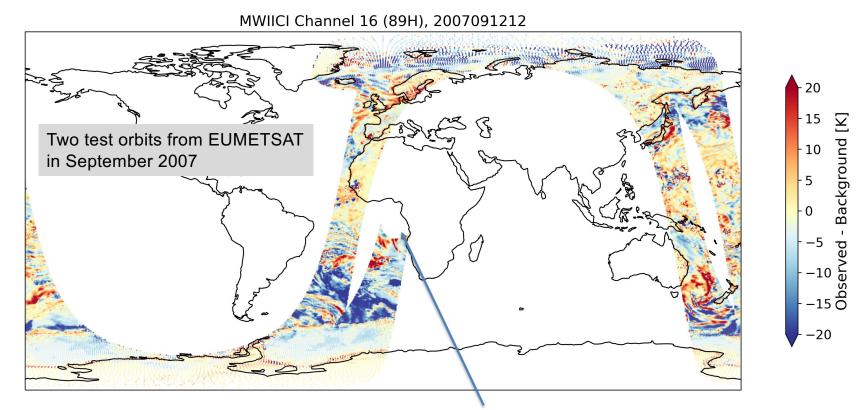
MWI and ICI feature very heavy spatial over-sampling, even compared to other MW imagers. Superobbing thus decreases data volume very significantly. On average:

- > 130 observations per superob for MWI channels
- > 73 observations per superob for ICI channels

	Ch. No.	Freq. [GHz]	Horn	_
	1, 2	18.7	1	1
MWIICI and the IFS	3, 4	23.8	2	
	5,6	31.4	3	
	7, 8	50.3	4	
	9, 10	52.70	4	
	11, 12	53.24	4	
In the IFS, the 39 channels and 15 horns are treated as one super-sensor	13, 14	53.75	4	
Combine all horns after superobbing step	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			6	- MWI
Provide a single, 39-channel, co-located observation vector to RTTOV-SCATT	18	118.7503 ± 2.1	6	
and the data assimilation system	19	118.7503 ± 1.4	6	
and the data assimilation system	20	118.7503 ± 1.2	6	
Can use ICI channels to analyse and constrain the assimilation of MWI	21	165.5 ± 0.725	7	
-	22	183.31 ± 7.0	8	
channels, and vice versa	23	183.31 ± 6.1	8	
Referred to as simply MWIICI	24	183.31 ± 4.9	8	
	25	183.31 ± 3.4	8	
	26	183.31 ± 2.0	8	-
	27	183.31 ± 7.0		1
Forward simulations use:	28	183.31 ± 3.4		
	29	183.31 ± 2.0		
RTTOV-SCATT v13.2 with the new SURFEM-Ocean emissivity model	30, 31	243.2 ± 2.5	2/3	
IES Cycle 40r1 (operational autumn 2024)	32	325.15 ± 9.5		
IFS Cycle 49r1 (operational autumn 2024)	33	325.15 ± 3.5		ICI
	34	325.15 ± 1.5	4	
	35	448 ± 7.2 448 ± 3.0	5	
ECRWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS	36 37	448 ± 3.0 448 ± 1.4	5	17
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS		448 ± 1.4 664 ± 4.2	5	1"
	38, 39	004 ± 4.2	6/7	1

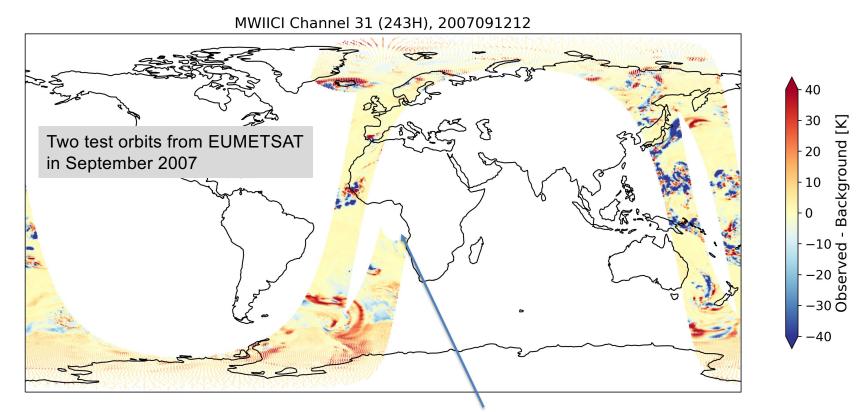

The custom data processing has two steps unique to MWIICI:

- Python/ECcodes-based pre-processing script that converts from EUMETSAT-provided BUFR to own internal format
 - Convert radiance to TB, calculate full geolocation, perform basic screening, and output each horn in own BUFR file
- After superobbing, merge the 15 horns of MWI and ICI into a single BUFR file based on common geolocations

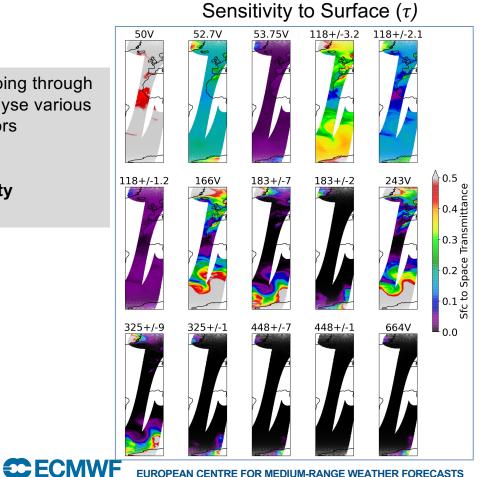

Pre-processing greatly reduces data volume! For one orbit:

- > 210m radiances → 1.8m radiances
- \triangleright 66m geolocations \rightarrow 60k geolocations

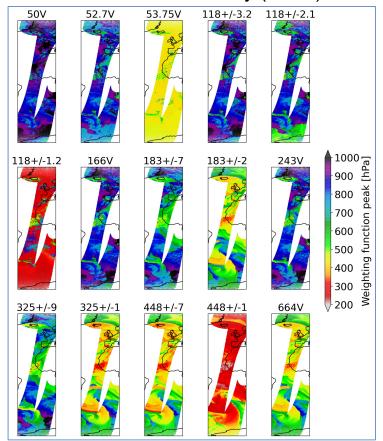
Now we have an MWIICI file in ODB format – ready for ingest to IFS



Note long-window DA runs 9-21Z for 12Z cycle and orbit 4655 starts at 8:43Z



Note long-window DA runs 9-21Z for 12Z cycle and orbit 4655 starts at 8:43Z



With MWIICI data going through the IFS, we can analyse various aspects of the sensors

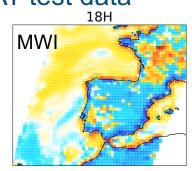
For example: **Sounding sensitivity**

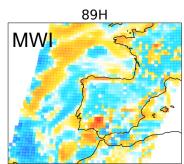
Peak vertical sensitivity ($d\tau/dP$)

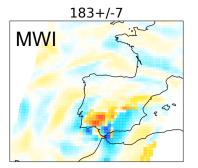
21

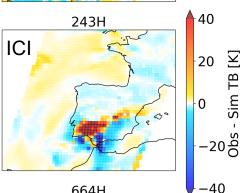
Outline

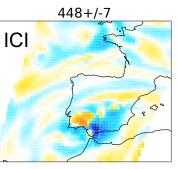
- 1) MWI and ICI introduction
- 2) Project concept
 - Why all-sky monitoring for cal/val?
 - Data selection for cal/val from NWP model output
- 3) Technical developments MWIICI and the IFS
- 4) Comparing IFS simulations to EUMETSAT test data
- 5) Application of cal/val monitoring system to current sensors
 - ➢ GMI, SSMIS, AMSR2
- 6) Monitoring website
- 7) Conclusions

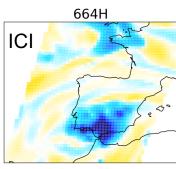

IFS simulations generally compare well with EUMETSAT test data

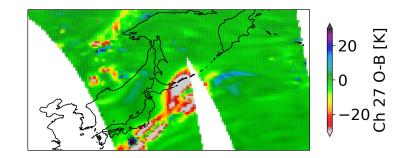

Several differences in assumptions, so we expect some biases from:

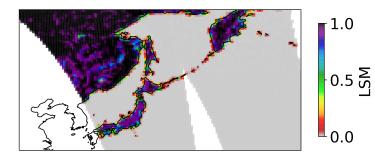

- > Land and ocean emissivity models
- Cloud and precipitation microphysics \geq

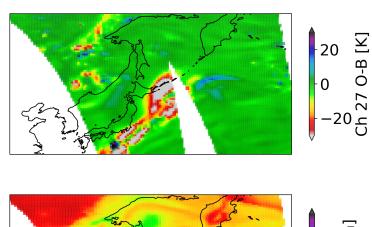

The IFS simulates less scattering in sub-mm channels:

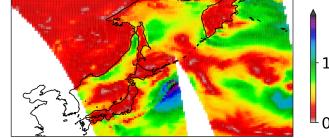

- > Mostly reasonable given different assumptions
- But 664GHz requires further work—signal from cirrus smaller than expected \geq

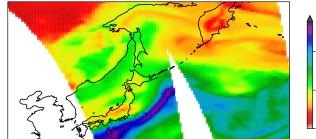


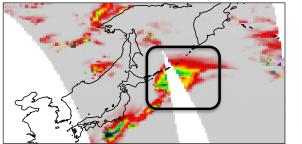


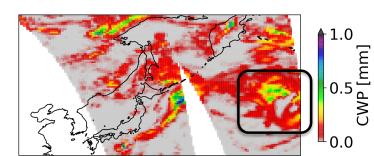

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

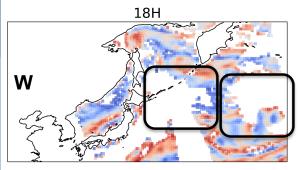

23

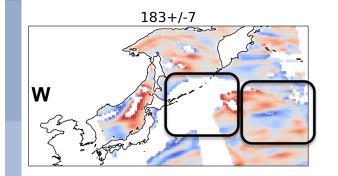

- Sim TB [K]

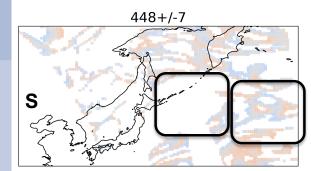


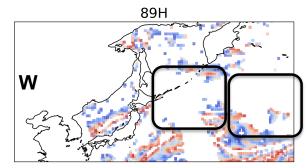


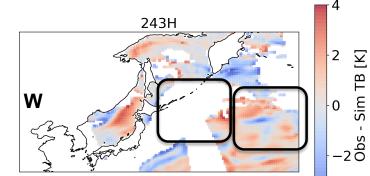


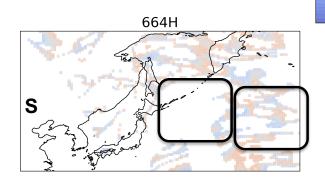


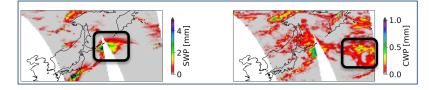


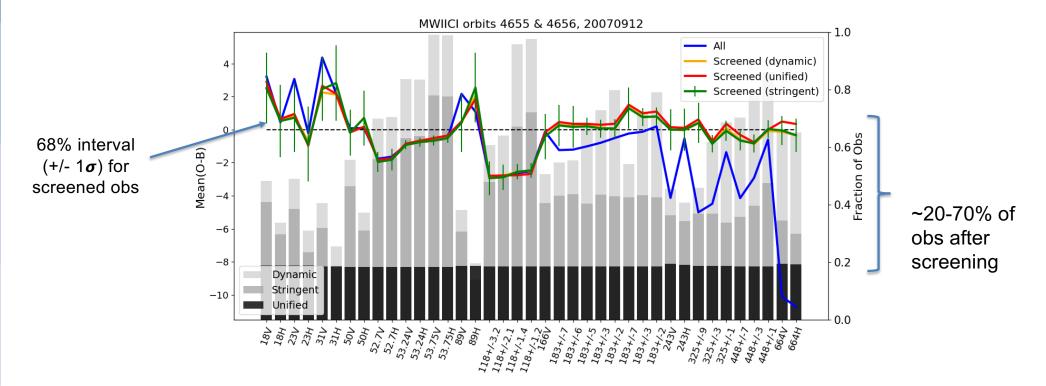

4 [uuu] dMS L₀




25





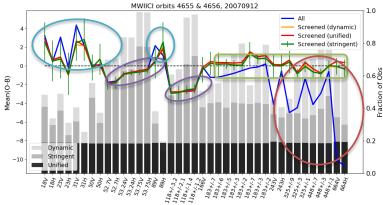

O-B after screening

- Screening (stringent shown here) does well to exclude heavily cloudaffected over land & sea
- Thinner and lower cloud remains in the sample for less sensitive channels
- Sounding channels have tighter CI threshold than window channels

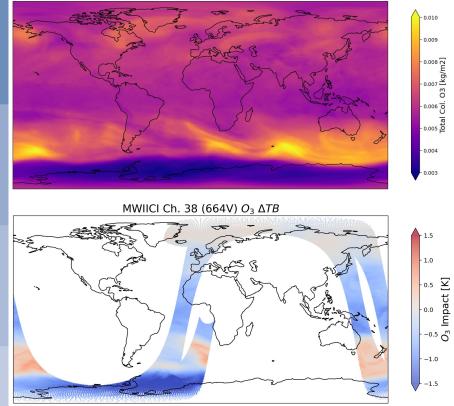
W = window S = sounder

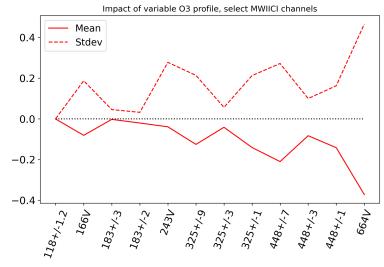
-4

26


Global statistics, 2 test orbits

Differences & possible causes


- More scattering in test data:
 - PSD in ARTS produces more scattering (all frozen hydrometeors treated like snow)
 - Scattering solver (see Barlakas et al. 2022)
 - Test data uses ERA5 convective precipitation rate converted to mass flux, assuming fixed fall speed
- Sounding biases
 - Rosenkranz (ARTS) vs. AMSUTRAN (RTTOV)
 - SRFs RTTOV uses measured SRF for ICI vs. 'top hat' SRF for MWI (~0.1K @ ICI-3, ~0.3 @ ICI-10); ARTS used monochromatic assumption in middle of lower passbands
- Window channel biases
 - TESSEM2 (ARTS) vs. SURFEM (IFS) see Geer et al. Tech Memo (soon to be published) on SURFEM vs. FASTEM performance in the IFS
- Most* higher frequency channels compare well after screening!


Bonus – ozone effects?

Column Ozone, ECMWF operational analysis, 20070912 12Z

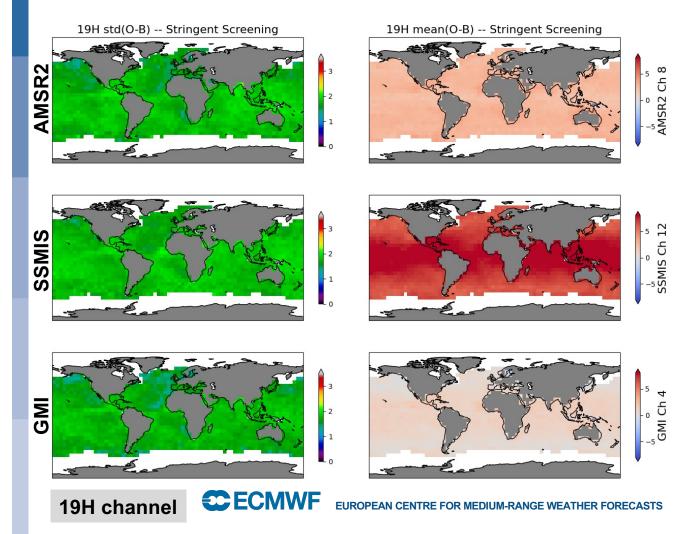
Test data did not include variable ozone in RT, but we expect sub-mm channels to have ozone sensitivity \rightarrow how much?

- > O_3 profiles from ECMWF analysis added to all-sky RT \rightarrow we can compare RT simulations with and without O_3 included
- > ~2 K signals seen at 664 GHz
- Non-negligible impact at 166 & 325 GHz (e.g. AWS)
- > Variable ozone will be included in RT for MWIICI when launched

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

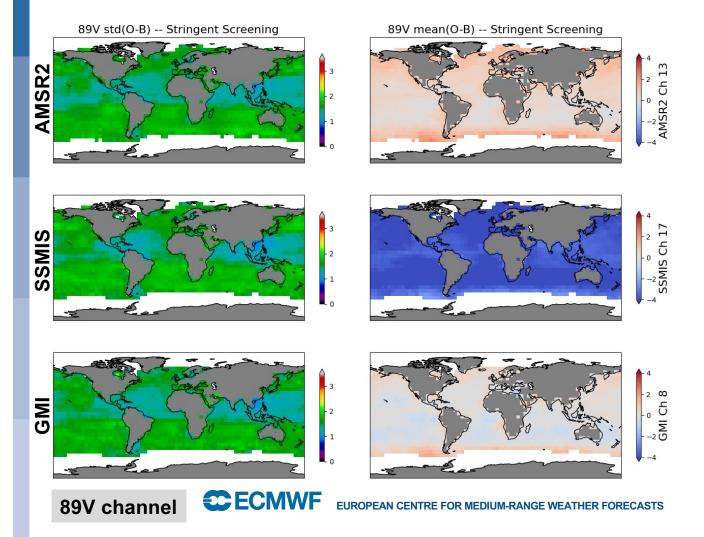
Outline

- 1) MWI and ICI introduction
- 2) Project concept
 - Why all-sky monitoring for cal/val?
 - Data selection for cal/val from NWP model output
- 3) Technical developments MWIICI and the IFS
- 4) Comparing IFS simulations to EUMETSAT test data
- 5) Application of cal/val monitoring system to current sensors
 - ➢ GMI, SSMIS, AMSR2
- 6) Monitoring website
- 7) Conclusions

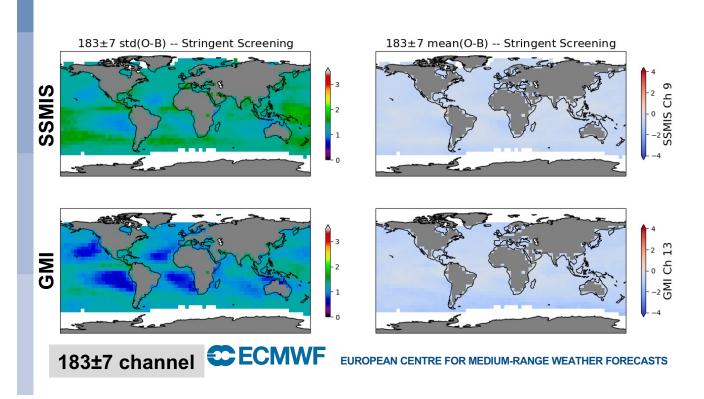

The method can be tested on similar frequency channels on current conically-scanning radiometers used in the IFS

- GMI, SSMIS, AMSR2 are all assimilated in the IFS
- Focus on common channels (e.g. 18, 89, 183 GHz)
- Analyse one month of data: May 2023

How to decide if data selection is adequate for cal/val purposes?

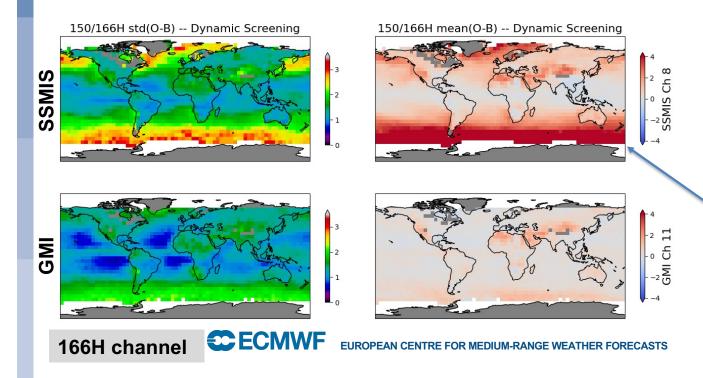

- Limited geographical variability in std(O-B) and bias
- > GMI biases look uniform (GMI as reference standard)
- > Maximise data sample but avoid problematic regions
- ➤ Caveats → frequencies not identical, different orbits

	1	I	1	
Ch. #	Freq. [GHz]	Horn	Туре	Similar channels
1, 2	18.7	1	W	GMI 3,4; SSMIS 13,12
➡3,4	23.8	2	W	GMI 5*; SSMIS 14*
5 , 6	31.4	3	W	GMI 6,7; SSMIS 16,15
7, 8	50.3	4	W	AMSU-A 3*; SSMIS 1^{\pm}
9, 10	52.70	4	W	AMSU-A 4*; SSMIS 2 $^{\pm}$
11, 12	53.24	4	S	AMSU-A 5^{\pm} ; SSMIS 3^{\pm}
13, 14	53.75	4	S	AMSU-A 6
□]15, 16	89.0	5	W	GMI 8,9; SSMIS 17,18
17	118.7503 ± 3.2	6	W	MWHS2 8
18	118.7503 ± 2.1	6	W	MWHS2 7
19	118.7503 ± 1.4	6	S	MWHS2 6
20	118.7503 ± 1.2	6	S	MWHS2 6
21	165.5 ± 0.725	7	W	GMI 10
22	183.31 ± 7.0	8	W	SSMIS 9; GMI 13
23	183.31 ± 6.1	8	W	-
24	183.31 ± 4.9	8	S	MWHS2 14; ATMS 19
25	183.31 ± 3.4	8	S	GMI 12; SSMIS 10
26	183.31 ± 2.0	8	S	ATMS 21; MWHS2 12
27	183.31 ± 7.0	1	W	SSMIS 9; GMI 13
28	183.31 ± 3.4	1	S	GMI 12; SSMIS 10

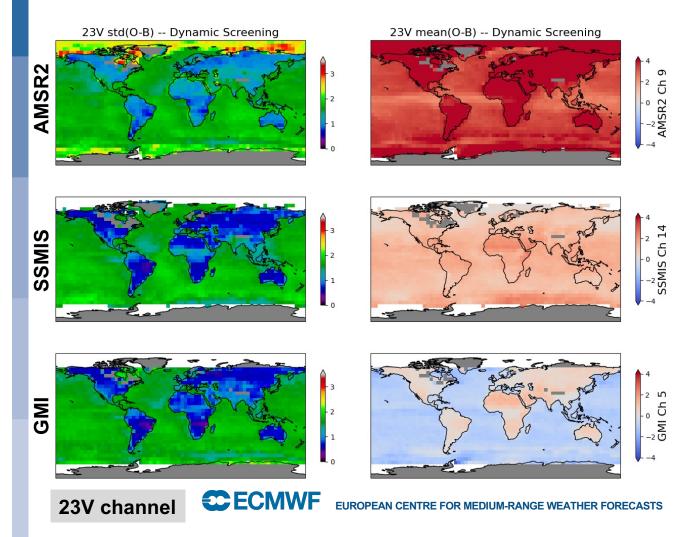

From a month of data, May 2023

- > Lowest frequency on MWI, 18.6 GHz
- Std(O-B) maps consistent
- GMI with near-zero bias and limited regional variation in bias
- AMSR2 and SSMIS show positive global biases as seen in the literature
- SSMIS exhibits some scene-dependence

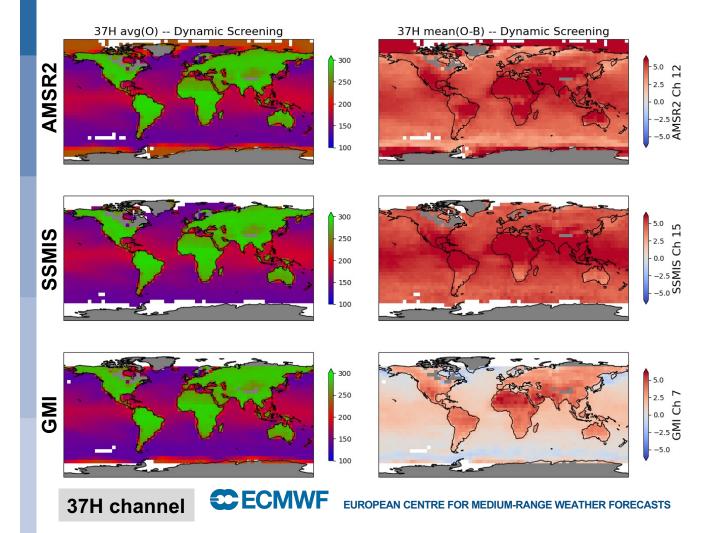
From a month of data, May 2023


- Like MWI 89.0 GHz
- Std(O-B) maps consistent
- GMI with near-zero bias and limited regional variation in bias
- SSMIS shows negative global bias

Higher frequencies, just GMI and SSMIS


- ▶ Like MWI and ICI 183 ± 7.0 GHz
- > Std(O-B) lower for GMI \rightarrow lower noise?
- GMI & SSMIS very consistent, near-zero global biases

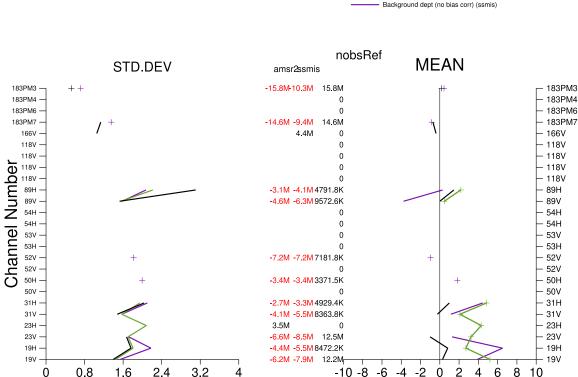
Now look at 'dynamic' selection to add window channels over land


Higher frequencies, just GMI and SSMIS

- Approximate comparison, 150H on SSMIS, 166H on GMI
- Like MWI 165.5 GHz
- ➢ Both show imperfect cloud screening in Southern Ocean → very cloud-sensitive
- ➤ GMI biases near-zero and mostly homogeneous except desert regions → skin temperature model bias
- SSMIS shows its well-known orbital bias due to solar illumination; also scenedependent bias not seen in GMI

Cutting edge \rightarrow imager channels over land?

- Like MWI 23.8 GHz
- Lower std(O-B) over land is expected
 - > Warm surface \rightarrow small cloud signals
 - Artefact from dynamic emissivity
- Convective diurnal cycle stronger for AMSR2 (1:30 ECT)
- > GMI shows land/sea contrast like AMSR2
 → scene-dependent bias?



Cutting edge \rightarrow imager channels over land?


- 37H channel has roughly double TB over land – big dynamic range!
- Some evidence of scene-dependent bias in all three?

Compare imager channels directly – using MWIICI channel basis

- Most lower frequency channels show similar std(O-B), especially GMI and AMSR2
- GMI shows mean biases of ±1 K against the IFS;
 89H is outlier (linked to known model biases)
- 183 GHz channels show good relative and absolute biases for GMI and SSMIS

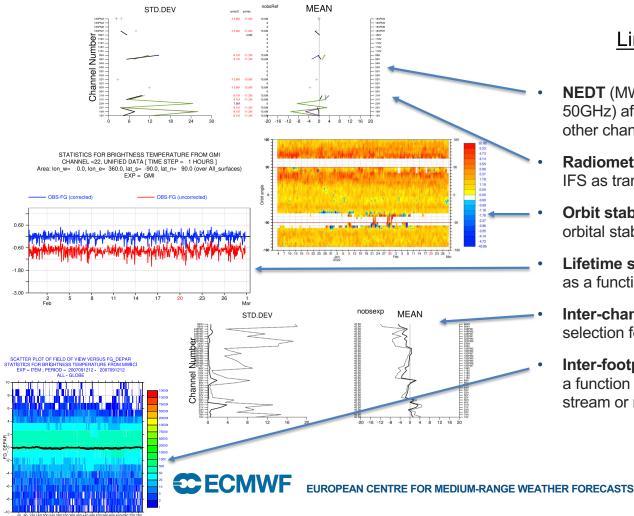
38

Outline

- 1) MWI and ICI introduction
- 2) Project concept
 - Why all-sky monitoring for cal/val?
 - Data selection for cal/val from NWP model output
- 3) Technical developments MWIICI and the IFS
- 4) Comparing IFS simulations to EUMETSAT test data
- 5) Application of cal/val monitoring system to current sensors
 - ➢ GMI, SSMIS, AMSR2
- 6) Monitoring website
- 7) Conclusions

Monitoring website

Home / Packages / MW//CI CAL/AL obs Q. Search products Category Satellite Data Data type Microwave radiances Experiment Ibj8 Ibj8 Ibj8 Parameter Ali sky radiances	Contrast of the second seco	Description of exception (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Instrument Instrument GMI SSMIS	All sky radiances from AMSR2 (Time series of area vergace)	A dy radiances from MASR2 (Time-averaged	All sky radiances from GMI (2D histogram)


Website produced for this project that leverages the ECMWF observation monitoring suite of tools (Obstat, ecCharts):

https://charts.ecmwf.int/catalogue/packages/eps_sg/

- Compare O-B statistics from MWIICI test data across various dimensions
- > Also applied to GMI, SSMIS, AMSR2 for recent dates
- User can view several plot types, apply different data selections, and download statistics files
- All channels indexed to MWIICI channel indicators to facilitate comparison between sensors

Monitoring website

Link to selection of EURD requirements

- NEDT (MWI-05070, ICI-06070) std(O-B) for sounder channels (e.g. 50GHz) after screening; gross violations of NEDT should be visible for other channels
- **Radiometric bias** (*MWI-05080, ICI-06080*) viewed relative to the IFS as transfer standard in context of other sensors
- **Orbit stability** (*MWI-05090, ICI-06090*) Hovmöller-style plot to view orbital stability over time via orbital angle
- Lifetime stability (*MWI-05100, ICI-06100*) global mean per channel as a function of time, per-orbit or per-cycle
- **Inter-channel bias differences** (*MWI-05110, ICI-06110*) same data selection for all channels from unified sample
- **Inter-footprint bias difference** (*MWI-05120, ICI-06120*) biases as a function of scan position, can be assessed using normal data stream or non-superobbed data from special experiment

41

Conclusions

A monitoring website now exists to analyse MWI and ICI performance against the all-sky ECMWF background in the context of other MW imagers

> The IFS is prepared for assessment of MWI and ICI soon after launch

- > Lots of technical work to get to this stage \rightarrow the most complex sensor pre-processing chain in the IFS (!)
- > Invaluable experience to test the system by processing of EUMETSAT-provided test data
- ➤ However, full scientific exploitation of MWIICI data not considered in this project → lots left to do especially for sub-mm channels!
- > Methodology developed here should benefit potential cal/val analysis of other MW instruments

References

- Duncan, D. I., Bormann, N., Geer, A. J. and Weston, P. (2023). Superobbing and finer thinning for all-sky humidity sounder assimilation. *Technical Report 905*, ECMWF Tech. Memo., doi:10.21957/5c3b9c8d9f, URL https://www.ecmwf.int/en/elibrary/ 81345-superobbing-and-finer-thinning-all-sky-humidity-sounder-assimilation.
- Eriksson, P., Rydberg, B., Mattioli, V., Thoss, A., Accadia, C., Klein, U. and Buehler, S. A. (2020). Towards an operational Ice Cloud Imager (ICI) retrieval product. *Atmos. Meas. Tech.*, 13(1), 53–71, doi:10.5194/amt-13-53-2020, URL https://amt.copernicus.org/articles/13/53/2020/.
- Geer, A. J., Lonitz, K., Duncan, D. I. and Bormann, N. (2022). Improved surface treatment for all-sky microwave observations. *Technical Report 894*, ECMWF Tech. Memo., Shinfield Park, Reading, doi: 10.21957/zi7q6hau, URL https://www.ecmwf.int/node/20337.
- Lonitz, K., Geer, A. J. and Bormann, N. (2022). Towards assimilating surface sensitive microwave channels over land. *Technical Report 58*, EUMETSAT/ECMWF Fellowship Programme Research Re- port, Shinfield Park, Reading, doi:10.21957/gdwqzfns, URL https://www.ecmwf.int/node/ 20334.
- Rydberg, B. and Eriksson, P. (2019). Backus-Gilbert footprint matching methodology applied on MWI and ICI observations. *Technical report*, Molflow AB, URL https://www.eumetsat.int/ media/47983.

