# Plans using IRS data at HungaroMet

Zsofia Kocsis

IRS MAG meeting 2025.06.03





### What did we do before?

#### Potential usefulness of IASI L2 (IR+MW) data for nowcasting purposes

- 6 month statistics on consistency of IASI L2 (IR+MW) derived and SEVIRI GII environmental parameters
- 7 case studies on potential usefulness of IASI derived environmental parameters, profiles for nowcasting

#### Focused on the IASI L2 IR-only data – as proxy data for MTG/IRS

(including the usefulness of synergetic use of IASI data with ground measurements) Statistics

- 6 month statistics on consistency of IASI L2 (IR-only) derived and SEVIRI GII environmental parameters
- <u>Comparison of the statistics between (IASI (IR+MW) and GII) and (IASI IR-only and GII)</u> Case studies - Gathered interesting cases (based on IASI (IR+MW) data)

Cases with <u>considerable differences</u> between IASI derived and ECMWF forecasted environmental parameters

- Performed some detailed case studies
- Analyzed IR-only derived parameters

Merged the IASI profiles with surface measurement

ngaroMet

## Experiences with IR-only data

We expected either no data for area covered with thick clouds, or profile data only above the cloud tops. (Thick clouds are opaque in the IR spectral region – satellite do not "see" inside/below the thick cloud in IR region.)

The IR-only retrieval provide full profile output (down to the surface) for thick clouds as well.

(However, the vertically averaged error is usually high for these pixels.)



### Comparing IASI (IR+MW) and IR-only data - summary

The vertically averaged errors are usually higher for IR-only data than for (IR+MW) data. It can reach even 5-6 C.

It is important to take into account the vertically averaged errors.

**On cloud-free areas, and areas covered by thin cirrus or small cumulus** the structure of the retrieved parameters and the profiles are usually similar, the differences in general not high.

For opaque mid/high clouds the profiles may be not reliable, even the T profiles can be considerably different.

For areas covered by opaque mid/high level clouds the uncertainty of T profile may became large.

It often strongly differ both from the forecasted and from the (IR+MW) T profile.



How to combine satellite derived profiles (representing **larger areas**) with **pointwise** surface measurements? The lowest level of the IASI profiles was modified.

#### Merging IASI profiles with surface measurements based on Bloch et al.

- In some dates and locations we performed it interactively using the in-built tools of the HAWK visualization system
- For the automatic merging, we did the following:



- Ground-based measurements
- 🔿 IASI pixel

- Interpolate the ground-based measurement to a grid (0.02°) using inverse distance weighting (IDW) taking into account topography. For each grid the stations within 50 km were used. (HAWK-3)
- Within the IASI ellipses: calculate average T, Td of the grid points.
- 3. Use this new T, Td as the surface value in the IASI profile.

Bloch, C., R. O. Knuteson, A. Gambacorta, N. R. Nalli, J. Gartzke, and L. Zhou, 2019: Near-Real-Time Surface-Based CAPE from Merged Hyperspectral IR Satellite Sounder and Surface Meteorological Station Data. *J. Appl. Meteor. Climatol.*, **58**, 1613–1632, <u>https://doi.org/10.1175/JAMC-D-18-0155.1</u>.

#### Merge with surface measurements

24 August 2019 (IASI data from 08:27UTC, forecast valid for 09UTC



ECMWF-INDEX BestLiftedIndex (°C) Sat 24-08-2019 09:00 (+9h) IASI\_SYNOP BestLiftedIndex LI (°C) Sat 24-08-2019 08:27 IASI SYNOP BestlittedIndex 72 104 - C. ECMWF-NDE BestLittedIndex -20 -12 -88 -5.5 -24 0.8 4 0

ECMWF + (IASI + synop) Best Lifted index

## Plans at HungaroMet for IRS L2 data



- Visualization of IRS data in HAWK-3
  - Adding the IRS test data to HAWK format conversion program is in progress
    - We need the surface pressure to be the lowest level in the profile (the number of vertical levels can change)
    - Calculate the height of the levels
    - Convert specific humidity to relative humidity
  - Using estimated errors for profiles and indices
  - Very important to find visualization where the forecasters can easily compare IRS indices and profiles with NWP data
  - Cooperation with the forecasters to find out what would be the best for them



### Plans at HungaroMet for IRS L2 data

- Assessing IRS L2 from nowcasting point of view:
  - How do the profiles behave for different clouds? Experience from IASI L2 IR-only still valid? Relations to error estimation values
  - Convection case studies using indices and profiles:
    - Comparison with models and other type of data what are the added value
  - Can we see inversion is there any information which can be useful for nowcasting of fog?
- Comparing both type of L2 with and without NWP which one is best for our purposes?



## Plans at HungaroMet

- Merging with synop data:
- Extanding the merging up to the boundary layer height involving other measurement data sources (f.e. ceilometer, GNSS...)
- When IRS L2 data becomes available, we will assess it together with the forecasters.



## Thank you! Any questions?



