IRS MAG June 2025

- **1.** Action 17.3: Feedback on possible impacts of the FOV diversity on AC applications and needs of information
- 2. Oversampling: Response to ITT "Enhancing the IRS spatial resolution using successive shifted dwell acquisitions"

IRS MAG June 2025

- **1.** Action 17.3: Feedback on possible impacts of the FOV diversity on AC applications and needs of information
- 2. Oversampling: Response to ITT "Enhancing the IRS spatial resolution using successive shifted dwell acquisitions"

Current retrieval approaches used for IASI (at ULB)

Q: Discontinuation of NRT OEM retrievals for IRS?

ANNI: Artificial Neural Network for IASI

NH₃, SO₂, VOCs, Dust, Altitudes...

!! Critical parameters !! Mean background spectrum Covariance matrix

Linear approach with neural network

2-step approach

1. Calculation of an Hyperspectral range index **HRI** (large spectral range)

 Conversion of the HRI to a total column NH₃ using a Neural Network

Noise diversity

Related to

Matricial detector Superpixels with possibly bad pixels

Question: Will PC compression not remove the problem?

If not: possible workarounds

- Physical retrievals spectral fitting
 - A single (conservative) noise value for all superpixels
 - One value per superpixel; scaling value provided by EUMETSAT if possible?

HRI-based approaches

 One ensemble of mean and ensemble (background) spectra per super-pixel

Drawbak is it would need to be redone if sub-pixels are de-selected

Would the users consider "choosing" the best performing FOV ?

No plan to "deselect" FOVs. For mapping, the more FOVs the better.

Is the exact knowledge of the PSF and co-registration important ? For point source detection ? For super-sampling applications ?

To share a toy model to reconstruct the PSF of any FOV and channels, available on the website?

- Yes knowledge of the PSF is important
- Indeed, a toy model would be helpful

PSF diversity

• Co-registration not so much an issue for AQ (as both bands carry different information).

Example for OMI (5 days of observation)

IRS MAG June 2025

- **1.** Action 17.3: Feedback on possible impacts of the FOV diversity on AC applications and needs of information
- 2. Oversampling: Response to ITT "Enhancing the IRS spatial resolution using successive shifted dwell acquisitions"

Background

Similar to IASI (and other satellite datasets): can we exploit overlapping IRS FOVs to generate oversampled / supersampled distributions and improve on the native spatial resolution?

- Surface monitoring
- Source identification and quantification
- Others?

Figure 1. Illustration of IASI footprint (in red) and overlap fractions with target grid cells for an oversampling approach (numbers in red and color-coded from yellow for 1 to blue for 0). The figure is reproduced from (Sun et al., 2018). In this example, the IASI pixel area is 336 km² and the grid resolution is 5 x 5 km.

Q: Will **IRS** provide partly overlapping pixels

Email from Bertrand : The platform will move within its "station keeping box" so that the position of the sub-satellite point will form a "8" shape. The viewing angle will then cycle on a 24h period by \pm 0,178° North-South and by \pm 0,0178°East-West. We can thus expect a maximum daily viewing oscillations (at NADIR) of the order of:

- NS: 111km = 28 pixels (24h period)
- *EW: 11km = 11 pixels (12h period)*

Situation with MTG-I is very favourable

Doc.No.	:	EUM/RSP/SOW/24/1435924	EUMETSAT
Issue	:	v1	Eumetsat-Allee 1, D-64295 Darmstadt, Germany
Date	1	11 November 2024	Tel: +49 6151 807-7

Fast computation of the IRS:

- ground instantaneous field of view (GIFOV)
- spatial response functions (SRF)

Based on orbital and geometrical data and IRS point spread function (PSF).

- Test analytical approximations (e.g. ellipse for IASI GIFOV, super-Gaussian for PSF)
- If no analytical approximations:
 - GIFOV → polygons
 - PSF \rightarrow look-up-table

Oversampling with GIFOV+PSF

Sun et al. 2018. AMT, 11(12), 6679–6701.

Example for OMI (5 days of observation)

Generation of synthetic IRS L2 products, based on:

- 1. High-resolution data from other sounders
- 2. PSF
- 3. MTG-I data orbital data
- 4. footprint code from WP 2

Emissivity	NO ₂ columns	
ASTER	ТЕМРО	
100 x 100m ²	2 x 4.75 km ² (L2 product) 2 x 2 km ² (L3 product)	
Non-wind-rotated over- and super-sampling	Wind-rotated super-sampling	

Back of the envelope calculation:

Number of IRS observations typically needed to produce meaningful oversampled distributions for source identification / quantification ?

1. With IASI, around 30 measurements per grid cells are typically needed for source identification. Only daytime cloud-free measurements are used; this translates to ~3-4 months of data

Back of the envelope calculation:

Number of IRS observations typically needed to produce meaningful oversampled distributions for source identification / quantification ?

1. With IASI, **around 30 measurements per grid cells** are typically needed for source identification. Only daytime cloud-free measurements are used; this translates to ~3-4 months of data

Back of the envelope calculation:

Number of IRS observations typically needed to produce meaningful oversampled distributions for source identification / quantification ?

2. Remember that for source monitoring, we will be heavily dependent on thermal contrast.

For IRS one can expect in "typical" summer conditions to measure surface NH_3 between 7 and 19h

For Europe (LAC 4) that would mean around **25 measurements**

⇒ Quasi daily oversampled distributions under a cloud free day?????